Solve for x
x=-11
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}\left(-1\right)-1=\frac{1}{2}\left(x+1\right)
Use the distributive property to multiply \frac{1}{3} by x-1.
\frac{1}{3}x-\frac{1}{3}-1=\frac{1}{2}\left(x+1\right)
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
\frac{1}{3}x-\frac{1}{3}-\frac{3}{3}=\frac{1}{2}\left(x+1\right)
Convert 1 to fraction \frac{3}{3}.
\frac{1}{3}x+\frac{-1-3}{3}=\frac{1}{2}\left(x+1\right)
Since -\frac{1}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}x-\frac{4}{3}=\frac{1}{2}\left(x+1\right)
Subtract 3 from -1 to get -4.
\frac{1}{3}x-\frac{4}{3}=\frac{1}{2}x+\frac{1}{2}
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{1}{3}x-\frac{4}{3}-\frac{1}{2}x=\frac{1}{2}
Subtract \frac{1}{2}x from both sides.
-\frac{1}{6}x-\frac{4}{3}=\frac{1}{2}
Combine \frac{1}{3}x and -\frac{1}{2}x to get -\frac{1}{6}x.
-\frac{1}{6}x=\frac{1}{2}+\frac{4}{3}
Add \frac{4}{3} to both sides.
-\frac{1}{6}x=\frac{3}{6}+\frac{8}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{4}{3} to fractions with denominator 6.
-\frac{1}{6}x=\frac{3+8}{6}
Since \frac{3}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
-\frac{1}{6}x=\frac{11}{6}
Add 3 and 8 to get 11.
x=\frac{11}{6}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}.
x=\frac{11\left(-6\right)}{6}
Express \frac{11}{6}\left(-6\right) as a single fraction.
x=\frac{-66}{6}
Multiply 11 and -6 to get -66.
x=-11
Divide -66 by 6 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}