Evaluate
-\frac{28}{15}\approx -1.866666667
Factor
-\frac{28}{15} = -1\frac{13}{15} = -1.8666666666666667
Share
Copied to clipboard
\frac{1}{3}\left(-1\right)\left(\frac{5}{1}-\frac{-3}{5}\right)\times 1
Divide 5 by 5 to get 1.
-\frac{1}{3}\left(\frac{5}{1}-\frac{-3}{5}\right)
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
-\frac{1}{3}\left(5-\frac{-3}{5}\right)
Anything divided by one gives itself.
-\frac{1}{3}\left(5-\left(-\frac{3}{5}\right)\right)
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
-\frac{1}{3}\left(5+\frac{3}{5}\right)
The opposite of -\frac{3}{5} is \frac{3}{5}.
-\frac{1}{3}\left(\frac{25}{5}+\frac{3}{5}\right)
Convert 5 to fraction \frac{25}{5}.
-\frac{1}{3}\times \frac{25+3}{5}
Since \frac{25}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
-\frac{1}{3}\times \frac{28}{5}
Add 25 and 3 to get 28.
\frac{-28}{3\times 5}\times 1
Multiply -\frac{1}{3} times \frac{28}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-28}{15}\times 1
Do the multiplications in the fraction \frac{-28}{3\times 5}.
-\frac{28}{15}
Fraction \frac{-28}{15} can be rewritten as -\frac{28}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}