Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\frac{1\left(-2\right)}{3\times 3}\left(\frac{2}{5}-\frac{1}{3}\right)}{-\frac{1}{15}}\times 3+\frac{1}{3}
Multiply \frac{1}{3} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-2}{9}\left(\frac{2}{5}-\frac{1}{3}\right)}{-\frac{1}{15}}\times 3+\frac{1}{3}
Do the multiplications in the fraction \frac{1\left(-2\right)}{3\times 3}.
\frac{-\frac{2}{9}\left(\frac{2}{5}-\frac{1}{3}\right)}{-\frac{1}{15}}\times 3+\frac{1}{3}
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.
\frac{-\frac{2}{9}\left(\frac{6}{15}-\frac{5}{15}\right)}{-\frac{1}{15}}\times 3+\frac{1}{3}
Least common multiple of 5 and 3 is 15. Convert \frac{2}{5} and \frac{1}{3} to fractions with denominator 15.
\frac{-\frac{2}{9}\times \frac{6-5}{15}}{-\frac{1}{15}}\times 3+\frac{1}{3}
Since \frac{6}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{2}{9}\times \frac{1}{15}}{-\frac{1}{15}}\times 3+\frac{1}{3}
Subtract 5 from 6 to get 1.
\frac{\frac{-2}{9\times 15}}{-\frac{1}{15}}\times 3+\frac{1}{3}
Multiply -\frac{2}{9} times \frac{1}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-2}{135}}{-\frac{1}{15}}\times 3+\frac{1}{3}
Do the multiplications in the fraction \frac{-2}{9\times 15}.
\frac{-\frac{2}{135}}{-\frac{1}{15}}\times 3+\frac{1}{3}
Fraction \frac{-2}{135} can be rewritten as -\frac{2}{135} by extracting the negative sign.
-\frac{2}{135}\left(-15\right)\times 3+\frac{1}{3}
Divide -\frac{2}{135} by -\frac{1}{15} by multiplying -\frac{2}{135} by the reciprocal of -\frac{1}{15}.
\frac{-2\left(-15\right)}{135}\times 3+\frac{1}{3}
Express -\frac{2}{135}\left(-15\right) as a single fraction.
\frac{30}{135}\times 3+\frac{1}{3}
Multiply -2 and -15 to get 30.
\frac{2}{9}\times 3+\frac{1}{3}
Reduce the fraction \frac{30}{135} to lowest terms by extracting and canceling out 15.
\frac{2\times 3}{9}+\frac{1}{3}
Express \frac{2}{9}\times 3 as a single fraction.
\frac{6}{9}+\frac{1}{3}
Multiply 2 and 3 to get 6.
\frac{2}{3}+\frac{1}{3}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
\frac{2+1}{3}
Since \frac{2}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{3}{3}
Add 2 and 1 to get 3.
1
Divide 3 by 3 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}