Evaluate
-\frac{1}{15}\approx -0.066666667
Factor
-\frac{1}{15} = -0.06666666666666667
Share
Copied to clipboard
\frac{1}{3}\left(\frac{2}{5}-2\left(\frac{1}{2}-\frac{1}{5}\right)\right)
Divide 4 by 2 to get 2.
\frac{1}{3}\left(\frac{2}{5}-2\left(\frac{5}{10}-\frac{2}{10}\right)\right)
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{1}{5} to fractions with denominator 10.
\frac{1}{3}\left(\frac{2}{5}-2\times \frac{5-2}{10}\right)
Since \frac{5}{10} and \frac{2}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\left(\frac{2}{5}-2\times \frac{3}{10}\right)
Subtract 2 from 5 to get 3.
\frac{1}{3}\left(\frac{2}{5}-\frac{2\times 3}{10}\right)
Express 2\times \frac{3}{10} as a single fraction.
\frac{1}{3}\left(\frac{2}{5}-\frac{6}{10}\right)
Multiply 2 and 3 to get 6.
\frac{1}{3}\left(\frac{2}{5}-\frac{3}{5}\right)
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{3}\times \frac{2-3}{5}
Since \frac{2}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\left(-\frac{1}{5}\right)
Subtract 3 from 2 to get -1.
\frac{1\left(-1\right)}{3\times 5}
Multiply \frac{1}{3} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{15}
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 5}.
-\frac{1}{15}
Fraction \frac{-1}{15} can be rewritten as -\frac{1}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}