Evaluate
-\frac{29}{12}\approx -2.416666667
Factor
-\frac{29}{12} = -2\frac{5}{12} = -2.4166666666666665
Share
Copied to clipboard
\frac{1}{3}+\frac{2\left(\frac{4}{2}-\frac{1}{2}\right)}{-\frac{4}{5}}+1
Convert 2 to fraction \frac{4}{2}.
\frac{1}{3}+\frac{2\times \frac{4-1}{2}}{-\frac{4}{5}}+1
Since \frac{4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}+\frac{2\times \frac{3}{2}}{-\frac{4}{5}}+1
Subtract 1 from 4 to get 3.
\frac{1}{3}+\frac{3}{-\frac{4}{5}}+1
Cancel out 2 and 2.
\frac{1}{3}+3\left(-\frac{5}{4}\right)+1
Divide 3 by -\frac{4}{5} by multiplying 3 by the reciprocal of -\frac{4}{5}.
\frac{1}{3}+\frac{3\left(-5\right)}{4}+1
Express 3\left(-\frac{5}{4}\right) as a single fraction.
\frac{1}{3}+\frac{-15}{4}+1
Multiply 3 and -5 to get -15.
\frac{1}{3}-\frac{15}{4}+1
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
\frac{4}{12}-\frac{45}{12}+1
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{15}{4} to fractions with denominator 12.
\frac{4-45}{12}+1
Since \frac{4}{12} and \frac{45}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{41}{12}+1
Subtract 45 from 4 to get -41.
-\frac{41}{12}+\frac{12}{12}
Convert 1 to fraction \frac{12}{12}.
\frac{-41+12}{12}
Since -\frac{41}{12} and \frac{12}{12} have the same denominator, add them by adding their numerators.
-\frac{29}{12}
Add -41 and 12 to get -29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}