Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}+\sqrt{\frac{7}{9}\sqrt{\sqrt{\frac{1\times 1}{2\times 4}\times \frac{32}{49}}+\frac{2}{49}}}
Multiply \frac{1}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}+\sqrt{\frac{7}{9}\sqrt{\sqrt{\frac{1}{8}\times \frac{32}{49}}+\frac{2}{49}}}
Do the multiplications in the fraction \frac{1\times 1}{2\times 4}.
\frac{1}{3}+\sqrt{\frac{7}{9}\sqrt{\sqrt{\frac{1\times 32}{8\times 49}}+\frac{2}{49}}}
Multiply \frac{1}{8} times \frac{32}{49} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}+\sqrt{\frac{7}{9}\sqrt{\sqrt{\frac{32}{392}}+\frac{2}{49}}}
Do the multiplications in the fraction \frac{1\times 32}{8\times 49}.
\frac{1}{3}+\sqrt{\frac{7}{9}\sqrt{\sqrt{\frac{4}{49}}+\frac{2}{49}}}
Reduce the fraction \frac{32}{392} to lowest terms by extracting and canceling out 8.
\frac{1}{3}+\sqrt{\frac{7}{9}\sqrt{\frac{2}{7}+\frac{2}{49}}}
Rewrite the square root of the division \frac{4}{49} as the division of square roots \frac{\sqrt{4}}{\sqrt{49}}. Take the square root of both numerator and denominator.
\frac{1}{3}+\sqrt{\frac{7}{9}\sqrt{\frac{14}{49}+\frac{2}{49}}}
Least common multiple of 7 and 49 is 49. Convert \frac{2}{7} and \frac{2}{49} to fractions with denominator 49.
\frac{1}{3}+\sqrt{\frac{7}{9}\sqrt{\frac{14+2}{49}}}
Since \frac{14}{49} and \frac{2}{49} have the same denominator, add them by adding their numerators.
\frac{1}{3}+\sqrt{\frac{7}{9}\sqrt{\frac{16}{49}}}
Add 14 and 2 to get 16.
\frac{1}{3}+\sqrt{\frac{7}{9}\times \frac{4}{7}}
Rewrite the square root of the division \frac{16}{49} as the division of square roots \frac{\sqrt{16}}{\sqrt{49}}. Take the square root of both numerator and denominator.
\frac{1}{3}+\sqrt{\frac{7\times 4}{9\times 7}}
Multiply \frac{7}{9} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}+\sqrt{\frac{4}{9}}
Cancel out 7 in both numerator and denominator.
\frac{1}{3}+\frac{2}{3}
Rewrite the square root of the division \frac{4}{9} as the division of square roots \frac{\sqrt{4}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{1+2}{3}
Since \frac{1}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{3}{3}
Add 1 and 2 to get 3.
1
Divide 3 by 3 to get 1.