Evaluate
\frac{299}{270}\approx 1.107407407
Factor
\frac{13 \cdot 23}{2 \cdot 3 ^ {3} \cdot 5} = 1\frac{29}{270} = 1.1074074074074074
Share
Copied to clipboard
\frac{2}{6}+\frac{5}{6}-\frac{1}{9}\times \frac{8}{15}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{2+5}{6}-\frac{1}{9}\times \frac{8}{15}
Since \frac{2}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{7}{6}-\frac{1}{9}\times \frac{8}{15}
Add 2 and 5 to get 7.
\frac{7}{6}-\frac{1\times 8}{9\times 15}
Multiply \frac{1}{9} times \frac{8}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{6}-\frac{8}{135}
Do the multiplications in the fraction \frac{1\times 8}{9\times 15}.
\frac{315}{270}-\frac{16}{270}
Least common multiple of 6 and 135 is 270. Convert \frac{7}{6} and \frac{8}{135} to fractions with denominator 270.
\frac{315-16}{270}
Since \frac{315}{270} and \frac{16}{270} have the same denominator, subtract them by subtracting their numerators.
\frac{299}{270}
Subtract 16 from 315 to get 299.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}