Evaluate
\frac{17}{12}\approx 1.416666667
Factor
\frac{17}{2 ^ {2} \cdot 3} = 1\frac{5}{12} = 1.4166666666666667
Share
Copied to clipboard
\frac{1}{3}+\frac{3\times 1}{4\times 3}-\frac{1}{4}\times \frac{2}{3}+1
Multiply \frac{3}{4} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}+\frac{1}{4}-\frac{1}{4}\times \frac{2}{3}+1
Cancel out 3 in both numerator and denominator.
\frac{4}{12}+\frac{3}{12}-\frac{1}{4}\times \frac{2}{3}+1
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{4+3}{12}-\frac{1}{4}\times \frac{2}{3}+1
Since \frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{7}{12}-\frac{1}{4}\times \frac{2}{3}+1
Add 4 and 3 to get 7.
\frac{7}{12}-\frac{1\times 2}{4\times 3}+1
Multiply \frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{12}-\frac{2}{12}+1
Do the multiplications in the fraction \frac{1\times 2}{4\times 3}.
\frac{7-2}{12}+1
Since \frac{7}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}+1
Subtract 2 from 7 to get 5.
\frac{5}{12}+\frac{12}{12}
Convert 1 to fraction \frac{12}{12}.
\frac{5+12}{12}
Since \frac{5}{12} and \frac{12}{12} have the same denominator, add them by adding their numerators.
\frac{17}{12}
Add 5 and 12 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}