Verify
false
Share
Copied to clipboard
\frac{2}{6}+\frac{1}{6}=\frac{3}{6}\text{ and }\frac{3}{6}=\frac{1}{2}\times \frac{6}{3}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{2+1}{6}=\frac{3}{6}\text{ and }\frac{3}{6}=\frac{1}{2}\times \frac{6}{3}
Since \frac{2}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{3}{6}=\frac{3}{6}\text{ and }\frac{3}{6}=\frac{1}{2}\times \frac{6}{3}
Add 2 and 1 to get 3.
\frac{1}{2}=\frac{3}{6}\text{ and }\frac{3}{6}=\frac{1}{2}\times \frac{6}{3}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{2}=\frac{1}{2}\text{ and }\frac{3}{6}=\frac{1}{2}\times \frac{6}{3}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\text{true}\text{ and }\frac{3}{6}=\frac{1}{2}\times \frac{6}{3}
Compare \frac{1}{2} and \frac{1}{2}.
\text{true}\text{ and }\frac{1}{2}=\frac{1}{2}\times \frac{6}{3}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\text{true}\text{ and }\frac{1}{2}=\frac{1}{2}\times 2
Divide 6 by 3 to get 2.
\text{true}\text{ and }\frac{1}{2}=1
Cancel out 2 and 2.
\text{true}\text{ and }\frac{1}{2}=\frac{2}{2}
Convert 1 to fraction \frac{2}{2}.
\text{true}\text{ and }\text{false}
Compare \frac{1}{2} and \frac{2}{2}.
\text{false}
The conjunction of \text{true} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}