Evaluate
\frac{11}{42}\approx 0.261904762
Factor
\frac{11}{2 \cdot 3 \cdot 7} = 0.2619047619047619
Share
Copied to clipboard
\frac{1}{3}+\frac{\frac{1}{4}}{\frac{2}{6}-\frac{3}{6}+\frac{3}{4}}-\frac{3}{6}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{1}{3}+\frac{\frac{1}{4}}{\frac{2-3}{6}+\frac{3}{4}}-\frac{3}{6}
Since \frac{2}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}+\frac{\frac{1}{4}}{-\frac{1}{6}+\frac{3}{4}}-\frac{3}{6}
Subtract 3 from 2 to get -1.
\frac{1}{3}+\frac{\frac{1}{4}}{-\frac{2}{12}+\frac{9}{12}}-\frac{3}{6}
Least common multiple of 6 and 4 is 12. Convert -\frac{1}{6} and \frac{3}{4} to fractions with denominator 12.
\frac{1}{3}+\frac{\frac{1}{4}}{\frac{-2+9}{12}}-\frac{3}{6}
Since -\frac{2}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\frac{1}{3}+\frac{\frac{1}{4}}{\frac{7}{12}}-\frac{3}{6}
Add -2 and 9 to get 7.
\frac{1}{3}+\frac{1}{4}\times \frac{12}{7}-\frac{3}{6}
Divide \frac{1}{4} by \frac{7}{12} by multiplying \frac{1}{4} by the reciprocal of \frac{7}{12}.
\frac{1}{3}+\frac{1\times 12}{4\times 7}-\frac{3}{6}
Multiply \frac{1}{4} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}+\frac{12}{28}-\frac{3}{6}
Do the multiplications in the fraction \frac{1\times 12}{4\times 7}.
\frac{1}{3}+\frac{3}{7}-\frac{3}{6}
Reduce the fraction \frac{12}{28} to lowest terms by extracting and canceling out 4.
\frac{7}{21}+\frac{9}{21}-\frac{3}{6}
Least common multiple of 3 and 7 is 21. Convert \frac{1}{3} and \frac{3}{7} to fractions with denominator 21.
\frac{7+9}{21}-\frac{3}{6}
Since \frac{7}{21} and \frac{9}{21} have the same denominator, add them by adding their numerators.
\frac{16}{21}-\frac{3}{6}
Add 7 and 9 to get 16.
\frac{16}{21}-\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{32}{42}-\frac{21}{42}
Least common multiple of 21 and 2 is 42. Convert \frac{16}{21} and \frac{1}{2} to fractions with denominator 42.
\frac{32-21}{42}
Since \frac{32}{42} and \frac{21}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{42}
Subtract 21 from 32 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}