Evaluate
\frac{1093}{2187}\approx 0.499771376
Factor
\frac{1093}{3 ^ {7}} = 0.4997713763145862
Share
Copied to clipboard
\frac{1}{3}+\frac{1}{9}+\frac{1}{3^{3}}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Calculate 3 to the power of 2 and get 9.
\frac{3}{9}+\frac{1}{9}+\frac{1}{3^{3}}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Least common multiple of 3 and 9 is 9. Convert \frac{1}{3} and \frac{1}{9} to fractions with denominator 9.
\frac{3+1}{9}+\frac{1}{3^{3}}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Since \frac{3}{9} and \frac{1}{9} have the same denominator, add them by adding their numerators.
\frac{4}{9}+\frac{1}{3^{3}}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Add 3 and 1 to get 4.
\frac{4}{9}+\frac{1}{27}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Calculate 3 to the power of 3 and get 27.
\frac{12}{27}+\frac{1}{27}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Least common multiple of 9 and 27 is 27. Convert \frac{4}{9} and \frac{1}{27} to fractions with denominator 27.
\frac{12+1}{27}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Since \frac{12}{27} and \frac{1}{27} have the same denominator, add them by adding their numerators.
\frac{13}{27}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Add 12 and 1 to get 13.
\frac{13}{27}+\frac{1}{81}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Calculate 3 to the power of 4 and get 81.
\frac{39}{81}+\frac{1}{81}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Least common multiple of 27 and 81 is 81. Convert \frac{13}{27} and \frac{1}{81} to fractions with denominator 81.
\frac{39+1}{81}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Since \frac{39}{81} and \frac{1}{81} have the same denominator, add them by adding their numerators.
\frac{40}{81}+\frac{1}{3^{5}}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Add 39 and 1 to get 40.
\frac{40}{81}+\frac{1}{243}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Calculate 3 to the power of 5 and get 243.
\frac{120}{243}+\frac{1}{243}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Least common multiple of 81 and 243 is 243. Convert \frac{40}{81} and \frac{1}{243} to fractions with denominator 243.
\frac{120+1}{243}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Since \frac{120}{243} and \frac{1}{243} have the same denominator, add them by adding their numerators.
\frac{121}{243}+\frac{1}{3^{6}}+\frac{1}{3^{7}}
Add 120 and 1 to get 121.
\frac{121}{243}+\frac{1}{729}+\frac{1}{3^{7}}
Calculate 3 to the power of 6 and get 729.
\frac{363}{729}+\frac{1}{729}+\frac{1}{3^{7}}
Least common multiple of 243 and 729 is 729. Convert \frac{121}{243} and \frac{1}{729} to fractions with denominator 729.
\frac{363+1}{729}+\frac{1}{3^{7}}
Since \frac{363}{729} and \frac{1}{729} have the same denominator, add them by adding their numerators.
\frac{364}{729}+\frac{1}{3^{7}}
Add 363 and 1 to get 364.
\frac{364}{729}+\frac{1}{2187}
Calculate 3 to the power of 7 and get 2187.
\frac{1092}{2187}+\frac{1}{2187}
Least common multiple of 729 and 2187 is 2187. Convert \frac{364}{729} and \frac{1}{2187} to fractions with denominator 2187.
\frac{1092+1}{2187}
Since \frac{1092}{2187} and \frac{1}{2187} have the same denominator, add them by adding their numerators.
\frac{1093}{2187}
Add 1092 and 1 to get 1093.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}