Evaluate
\frac{1865}{5148}\approx 0.362276612
Factor
\frac{5 \cdot 373}{2 ^ {2} \cdot 3 ^ {2} \cdot 11 \cdot 13} = 0.3622766122766123
Share
Copied to clipboard
\frac{1}{12}+\frac{1}{4+5}+\frac{1}{5+6}+\frac{1}{6+7}
Multiply 3 and 4 to get 12.
\frac{1}{12}+\frac{1}{9}+\frac{1}{5+6}+\frac{1}{6+7}
Add 4 and 5 to get 9.
\frac{3}{36}+\frac{4}{36}+\frac{1}{5+6}+\frac{1}{6+7}
Least common multiple of 12 and 9 is 36. Convert \frac{1}{12} and \frac{1}{9} to fractions with denominator 36.
\frac{3+4}{36}+\frac{1}{5+6}+\frac{1}{6+7}
Since \frac{3}{36} and \frac{4}{36} have the same denominator, add them by adding their numerators.
\frac{7}{36}+\frac{1}{5+6}+\frac{1}{6+7}
Add 3 and 4 to get 7.
\frac{7}{36}+\frac{1}{11}+\frac{1}{6+7}
Add 5 and 6 to get 11.
\frac{77}{396}+\frac{36}{396}+\frac{1}{6+7}
Least common multiple of 36 and 11 is 396. Convert \frac{7}{36} and \frac{1}{11} to fractions with denominator 396.
\frac{77+36}{396}+\frac{1}{6+7}
Since \frac{77}{396} and \frac{36}{396} have the same denominator, add them by adding their numerators.
\frac{113}{396}+\frac{1}{6+7}
Add 77 and 36 to get 113.
\frac{113}{396}+\frac{1}{13}
Add 6 and 7 to get 13.
\frac{1469}{5148}+\frac{396}{5148}
Least common multiple of 396 and 13 is 5148. Convert \frac{113}{396} and \frac{1}{13} to fractions with denominator 5148.
\frac{1469+396}{5148}
Since \frac{1469}{5148} and \frac{396}{5148} have the same denominator, add them by adding their numerators.
\frac{1865}{5148}
Add 1469 and 396 to get 1865.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}