Evaluate
8-3\sqrt{7}\approx 0.062746067
Share
Copied to clipboard
\frac{3\sqrt{7}-8}{\left(3\sqrt{7}+8\right)\left(3\sqrt{7}-8\right)}
Rationalize the denominator of \frac{1}{3\sqrt{7}+8} by multiplying numerator and denominator by 3\sqrt{7}-8.
\frac{3\sqrt{7}-8}{\left(3\sqrt{7}\right)^{2}-8^{2}}
Consider \left(3\sqrt{7}+8\right)\left(3\sqrt{7}-8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{7}-8}{3^{2}\left(\sqrt{7}\right)^{2}-8^{2}}
Expand \left(3\sqrt{7}\right)^{2}.
\frac{3\sqrt{7}-8}{9\left(\sqrt{7}\right)^{2}-8^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{3\sqrt{7}-8}{9\times 7-8^{2}}
The square of \sqrt{7} is 7.
\frac{3\sqrt{7}-8}{63-8^{2}}
Multiply 9 and 7 to get 63.
\frac{3\sqrt{7}-8}{63-64}
Calculate 8 to the power of 2 and get 64.
\frac{3\sqrt{7}-8}{-1}
Subtract 64 from 63 to get -1.
-3\sqrt{7}-\left(-8\right)
Anything divided by -1 gives its opposite. To find the opposite of 3\sqrt{7}-8, find the opposite of each term.
-3\sqrt{7}+8
The opposite of -8 is 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}