Evaluate
\frac{\sqrt{5}}{3}\approx 0.745355992
Share
Copied to clipboard
\frac{1}{3\times \frac{\sqrt{1}}{\sqrt{5}}}
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
\frac{1}{3\times \frac{1}{\sqrt{5}}}
Calculate the square root of 1 and get 1.
\frac{1}{3\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{1}{3\times \frac{\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{1}{\frac{3\sqrt{5}}{5}}
Express 3\times \frac{\sqrt{5}}{5} as a single fraction.
\frac{5}{3\sqrt{5}}
Divide 1 by \frac{3\sqrt{5}}{5} by multiplying 1 by the reciprocal of \frac{3\sqrt{5}}{5}.
\frac{5\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{5}{3\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{5\sqrt{5}}{3\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{3}
Cancel out 5 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}