Evaluate
\frac{81\sqrt{3}-9}{242}\approx 0.542545931
Factor
\frac{9 {(9 \sqrt{3} - 1)}}{242} = 0.5425459314590043
Share
Copied to clipboard
\frac{1}{\frac{1}{9}+\sqrt{3}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{9}-\sqrt{3}}{\left(\frac{1}{9}+\sqrt{3}\right)\left(\frac{1}{9}-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{\frac{1}{9}+\sqrt{3}} by multiplying numerator and denominator by \frac{1}{9}-\sqrt{3}.
\frac{\frac{1}{9}-\sqrt{3}}{\left(\frac{1}{9}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\frac{1}{9}+\sqrt{3}\right)\left(\frac{1}{9}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{1}{9}-\sqrt{3}}{\frac{1}{81}-3}
Square \frac{1}{9}. Square \sqrt{3}.
\frac{\frac{1}{9}-\sqrt{3}}{-\frac{242}{81}}
Subtract 3 from \frac{1}{81} to get -\frac{242}{81}.
\frac{\left(\frac{1}{9}-\sqrt{3}\right)\times 81}{-242}
Divide \frac{1}{9}-\sqrt{3} by -\frac{242}{81} by multiplying \frac{1}{9}-\sqrt{3} by the reciprocal of -\frac{242}{81}.
\frac{9-81\sqrt{3}}{-242}
Use the distributive property to multiply \frac{1}{9}-\sqrt{3} by 81.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}