Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\frac{1}{3}+\sqrt{3}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\frac{1}{3}-\sqrt{3}}{\left(\frac{1}{3}+\sqrt{3}\right)\left(\frac{1}{3}-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{\frac{1}{3}+\sqrt{3}} by multiplying numerator and denominator by \frac{1}{3}-\sqrt{3}.
\frac{\frac{1}{3}-\sqrt{3}}{\left(\frac{1}{3}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\frac{1}{3}+\sqrt{3}\right)\left(\frac{1}{3}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{1}{3}-\sqrt{3}}{\frac{1}{9}-3}
Square \frac{1}{3}. Square \sqrt{3}.
\frac{\frac{1}{3}-\sqrt{3}}{-\frac{26}{9}}
Subtract 3 from \frac{1}{9} to get -\frac{26}{9}.
\frac{\left(\frac{1}{3}-\sqrt{3}\right)\times 9}{-26}
Divide \frac{1}{3}-\sqrt{3} by -\frac{26}{9} by multiplying \frac{1}{3}-\sqrt{3} by the reciprocal of -\frac{26}{9}.
\frac{3-9\sqrt{3}}{-26}
Use the distributive property to multiply \frac{1}{3}-\sqrt{3} by 9.