Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-4i.
\frac{1\left(3-4i\right)}{3^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(3-4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3-4i}{25}
Multiply 1 and 3-4i to get 3-4i.
\frac{3}{25}-\frac{4}{25}i
Divide 3-4i by 25 to get \frac{3}{25}-\frac{4}{25}i.
Re(\frac{1\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)})
Multiply both numerator and denominator of \frac{1}{3+4i} by the complex conjugate of the denominator, 3-4i.
Re(\frac{1\left(3-4i\right)}{3^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(3-4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3-4i}{25})
Multiply 1 and 3-4i to get 3-4i.
Re(\frac{3}{25}-\frac{4}{25}i)
Divide 3-4i by 25 to get \frac{3}{25}-\frac{4}{25}i.
\frac{3}{25}
The real part of \frac{3}{25}-\frac{4}{25}i is \frac{3}{25}.