Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3-\sqrt{3}}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}+\frac{1}{1+\sqrt{3}}
Rationalize the denominator of \frac{1}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
\frac{3-\sqrt{3}}{3^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1}{1+\sqrt{3}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3-\sqrt{3}}{9-3}+\frac{1}{1+\sqrt{3}}
Square 3. Square \sqrt{3}.
\frac{3-\sqrt{3}}{6}+\frac{1}{1+\sqrt{3}}
Subtract 3 from 9 to get 6.
\frac{3-\sqrt{3}}{6}+\frac{1-\sqrt{3}}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{3-\sqrt{3}}{6}+\frac{1-\sqrt{3}}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3-\sqrt{3}}{6}+\frac{1-\sqrt{3}}{1-3}
Square 1. Square \sqrt{3}.
\frac{3-\sqrt{3}}{6}+\frac{1-\sqrt{3}}{-2}
Subtract 3 from 1 to get -2.
\frac{3-\sqrt{3}}{6}+\frac{-1+\sqrt{3}}{2}
Multiply both numerator and denominator by -1.
\frac{3-\sqrt{3}}{6}+\frac{3\left(-1+\sqrt{3}\right)}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 2 is 6. Multiply \frac{-1+\sqrt{3}}{2} times \frac{3}{3}.
\frac{3-\sqrt{3}+3\left(-1+\sqrt{3}\right)}{6}
Since \frac{3-\sqrt{3}}{6} and \frac{3\left(-1+\sqrt{3}\right)}{6} have the same denominator, add them by adding their numerators.
\frac{3-\sqrt{3}-3+3\sqrt{3}}{6}
Do the multiplications in 3-\sqrt{3}+3\left(-1+\sqrt{3}\right).
\frac{2\sqrt{3}}{6}
Do the calculations in 3-\sqrt{3}-3+3\sqrt{3}.
\frac{1}{3}\sqrt{3}
Divide 2\sqrt{3} by 6 to get \frac{1}{3}\sqrt{3}.