Factor
\frac{\left(5x+3y\right)\left(25x^{2}-15xy+9y^{2}\right)}{3375}
Evaluate
\frac{x^{3}}{27}+\frac{y^{3}}{125}
Share
Copied to clipboard
\frac{125x^{3}+27y^{3}}{3375}
Factor out \frac{1}{3375}.
\left(5x+3y\right)\left(25x^{2}-15xy+9y^{2}\right)
Consider 125x^{3}+27y^{3}. Rewrite 125x^{3}+27y^{3} as \left(5x\right)^{3}+\left(3y\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\frac{\left(5x+3y\right)\left(25x^{2}-15xy+9y^{2}\right)}{3375}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}