Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\frac{1\times 2}{27\times 3}+\frac{1}{3}\times \left(\frac{2}{3}\right)^{3}+\left(\frac{1}{3}\right)^{4}+\left(\frac{2}{3}\right)^{4}
Multiply \frac{1}{27} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{81}+\frac{1}{3}\times \left(\frac{2}{3}\right)^{3}+\left(\frac{1}{3}\right)^{4}+\left(\frac{2}{3}\right)^{4}
Do the multiplications in the fraction \frac{1\times 2}{27\times 3}.
\frac{2}{81}+\frac{1}{3}\times \frac{8}{27}+\left(\frac{1}{3}\right)^{4}+\left(\frac{2}{3}\right)^{4}
Calculate \frac{2}{3} to the power of 3 and get \frac{8}{27}.
\frac{2}{81}+\frac{1\times 8}{3\times 27}+\left(\frac{1}{3}\right)^{4}+\left(\frac{2}{3}\right)^{4}
Multiply \frac{1}{3} times \frac{8}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{81}+\frac{8}{81}+\left(\frac{1}{3}\right)^{4}+\left(\frac{2}{3}\right)^{4}
Do the multiplications in the fraction \frac{1\times 8}{3\times 27}.
\frac{2+8}{81}+\left(\frac{1}{3}\right)^{4}+\left(\frac{2}{3}\right)^{4}
Since \frac{2}{81} and \frac{8}{81} have the same denominator, add them by adding their numerators.
\frac{10}{81}+\left(\frac{1}{3}\right)^{4}+\left(\frac{2}{3}\right)^{4}
Add 2 and 8 to get 10.
\frac{10}{81}+\frac{1}{81}+\left(\frac{2}{3}\right)^{4}
Calculate \frac{1}{3} to the power of 4 and get \frac{1}{81}.
\frac{10+1}{81}+\left(\frac{2}{3}\right)^{4}
Since \frac{10}{81} and \frac{1}{81} have the same denominator, add them by adding their numerators.
\frac{11}{81}+\left(\frac{2}{3}\right)^{4}
Add 10 and 1 to get 11.
\frac{11}{81}+\frac{16}{81}
Calculate \frac{2}{3} to the power of 4 and get \frac{16}{81}.
\frac{11+16}{81}
Since \frac{11}{81} and \frac{16}{81} have the same denominator, add them by adding their numerators.
\frac{27}{81}
Add 11 and 16 to get 27.
\frac{1}{3}
Reduce the fraction \frac{27}{81} to lowest terms by extracting and canceling out 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}