Solve for a_0
a_{0}=\frac{2}{469}\approx 0.004264392
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { 254.5 } = \frac { a 0 } { 1 + a _ { 0 } ( 20 ) }
Share
Copied to clipboard
\left(20a_{0}+1\right)\times \frac{1}{254.5}=a_{0}
Variable a_{0} cannot be equal to -\frac{1}{20} since division by zero is not defined. Multiply both sides of the equation by 20a_{0}+1.
\left(20a_{0}+1\right)\times \frac{10}{2545}=a_{0}
Expand \frac{1}{254.5} by multiplying both numerator and the denominator by 10.
\left(20a_{0}+1\right)\times \frac{2}{509}=a_{0}
Reduce the fraction \frac{10}{2545} to lowest terms by extracting and canceling out 5.
\frac{40}{509}a_{0}+\frac{2}{509}=a_{0}
Use the distributive property to multiply 20a_{0}+1 by \frac{2}{509}.
\frac{40}{509}a_{0}+\frac{2}{509}-a_{0}=0
Subtract a_{0} from both sides.
-\frac{469}{509}a_{0}+\frac{2}{509}=0
Combine \frac{40}{509}a_{0} and -a_{0} to get -\frac{469}{509}a_{0}.
-\frac{469}{509}a_{0}=-\frac{2}{509}
Subtract \frac{2}{509} from both sides. Anything subtracted from zero gives its negation.
a_{0}=-\frac{2}{509}\left(-\frac{509}{469}\right)
Multiply both sides by -\frac{509}{469}, the reciprocal of -\frac{469}{509}.
a_{0}=\frac{2}{469}
Multiply -\frac{2}{509} and -\frac{509}{469} to get \frac{2}{469}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}