Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{25}a^{5}b^{2}\left(-5\right)b^{3}-\frac{1}{10}a^{2}b^{3}\left(-2\right)a^{3}b^{2}+18a^{5}-\frac{1}{2}a\times 36a^{4}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{1}{25}a^{5}b^{5}\left(-5\right)-\frac{1}{10}a^{2}b^{3}\left(-2\right)a^{3}b^{2}+18a^{5}-\frac{1}{2}a\times 36a^{4}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{1}{25}a^{5}b^{5}\left(-5\right)-\frac{1}{10}a^{5}b^{3}\left(-2\right)b^{2}+18a^{5}-\frac{1}{2}a\times 36a^{4}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{1}{25}a^{5}b^{5}\left(-5\right)-\frac{1}{10}a^{5}b^{5}\left(-2\right)+18a^{5}-\frac{1}{2}a\times 36a^{4}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{1}{25}a^{5}b^{5}\left(-5\right)-\frac{1}{10}a^{5}b^{5}\left(-2\right)+18a^{5}-\frac{1}{2}a^{5}\times 36
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
-\frac{1}{5}a^{5}b^{5}-\frac{1}{10}a^{5}b^{5}\left(-2\right)+18a^{5}-\frac{1}{2}a^{5}\times 36
Multiply \frac{1}{25} and -5 to get -\frac{1}{5}.
-\frac{1}{5}a^{5}b^{5}-\left(-\frac{1}{5}a^{5}b^{5}\right)+18a^{5}-\frac{1}{2}a^{5}\times 36
Multiply \frac{1}{10} and -2 to get -\frac{1}{5}.
-\frac{1}{5}a^{5}b^{5}+\frac{1}{5}a^{5}b^{5}+18a^{5}-\frac{1}{2}a^{5}\times 36
The opposite of -\frac{1}{5}a^{5}b^{5} is \frac{1}{5}a^{5}b^{5}.
0+18a^{5}-\frac{1}{2}a^{5}\times 36
Combine -\frac{1}{5}a^{5}b^{5} and \frac{1}{5}a^{5}b^{5} to get 0.
18a^{5}-\frac{1}{2}a^{5}\times 36
Anything plus zero gives itself.
18a^{5}-18a^{5}
Multiply \frac{1}{2} and 36 to get 18.
0
Combine 18a^{5} and -18a^{5} to get 0.
\frac{-a^{3}b^{2}a^{2}b^{3}+a^{2}b^{3}a^{3}b^{2}+90a^{5}-90aa^{4}}{5}
Factor out \frac{1}{5}.
0
Consider -a^{5}b^{5}+a^{5}b^{5}+90a^{5}-90a^{5}. Factor out a^{5}.