Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{25}\left(x^{2}-2x+1\right)=\frac{1}{9}\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\frac{1}{25}x^{2}-\frac{2}{25}x+\frac{1}{25}=\frac{1}{9}\left(x+1\right)^{2}
Use the distributive property to multiply \frac{1}{25} by x^{2}-2x+1.
\frac{1}{25}x^{2}-\frac{2}{25}x+\frac{1}{25}=\frac{1}{9}\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{1}{25}x^{2}-\frac{2}{25}x+\frac{1}{25}=\frac{1}{9}x^{2}+\frac{2}{9}x+\frac{1}{9}
Use the distributive property to multiply \frac{1}{9} by x^{2}+2x+1.
\frac{1}{25}x^{2}-\frac{2}{25}x+\frac{1}{25}-\frac{1}{9}x^{2}=\frac{2}{9}x+\frac{1}{9}
Subtract \frac{1}{9}x^{2} from both sides.
-\frac{16}{225}x^{2}-\frac{2}{25}x+\frac{1}{25}=\frac{2}{9}x+\frac{1}{9}
Combine \frac{1}{25}x^{2} and -\frac{1}{9}x^{2} to get -\frac{16}{225}x^{2}.
-\frac{16}{225}x^{2}-\frac{2}{25}x+\frac{1}{25}-\frac{2}{9}x=\frac{1}{9}
Subtract \frac{2}{9}x from both sides.
-\frac{16}{225}x^{2}-\frac{68}{225}x+\frac{1}{25}=\frac{1}{9}
Combine -\frac{2}{25}x and -\frac{2}{9}x to get -\frac{68}{225}x.
-\frac{16}{225}x^{2}-\frac{68}{225}x+\frac{1}{25}-\frac{1}{9}=0
Subtract \frac{1}{9} from both sides.
-\frac{16}{225}x^{2}-\frac{68}{225}x-\frac{16}{225}=0
Subtract \frac{1}{9} from \frac{1}{25} to get -\frac{16}{225}.
x=\frac{-\left(-\frac{68}{225}\right)±\sqrt{\left(-\frac{68}{225}\right)^{2}-4\left(-\frac{16}{225}\right)\left(-\frac{16}{225}\right)}}{2\left(-\frac{16}{225}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{16}{225} for a, -\frac{68}{225} for b, and -\frac{16}{225} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{68}{225}\right)±\sqrt{\frac{4624}{50625}-4\left(-\frac{16}{225}\right)\left(-\frac{16}{225}\right)}}{2\left(-\frac{16}{225}\right)}
Square -\frac{68}{225} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{68}{225}\right)±\sqrt{\frac{4624}{50625}+\frac{64}{225}\left(-\frac{16}{225}\right)}}{2\left(-\frac{16}{225}\right)}
Multiply -4 times -\frac{16}{225}.
x=\frac{-\left(-\frac{68}{225}\right)±\sqrt{\frac{4624-1024}{50625}}}{2\left(-\frac{16}{225}\right)}
Multiply \frac{64}{225} times -\frac{16}{225} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{68}{225}\right)±\sqrt{\frac{16}{225}}}{2\left(-\frac{16}{225}\right)}
Add \frac{4624}{50625} to -\frac{1024}{50625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{68}{225}\right)±\frac{4}{15}}{2\left(-\frac{16}{225}\right)}
Take the square root of \frac{16}{225}.
x=\frac{\frac{68}{225}±\frac{4}{15}}{2\left(-\frac{16}{225}\right)}
The opposite of -\frac{68}{225} is \frac{68}{225}.
x=\frac{\frac{68}{225}±\frac{4}{15}}{-\frac{32}{225}}
Multiply 2 times -\frac{16}{225}.
x=\frac{\frac{128}{225}}{-\frac{32}{225}}
Now solve the equation x=\frac{\frac{68}{225}±\frac{4}{15}}{-\frac{32}{225}} when ± is plus. Add \frac{68}{225} to \frac{4}{15} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-4
Divide \frac{128}{225} by -\frac{32}{225} by multiplying \frac{128}{225} by the reciprocal of -\frac{32}{225}.
x=\frac{\frac{8}{225}}{-\frac{32}{225}}
Now solve the equation x=\frac{\frac{68}{225}±\frac{4}{15}}{-\frac{32}{225}} when ± is minus. Subtract \frac{4}{15} from \frac{68}{225} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{4}
Divide \frac{8}{225} by -\frac{32}{225} by multiplying \frac{8}{225} by the reciprocal of -\frac{32}{225}.
x=-4 x=-\frac{1}{4}
The equation is now solved.
\frac{1}{25}\left(x^{2}-2x+1\right)=\frac{1}{9}\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\frac{1}{25}x^{2}-\frac{2}{25}x+\frac{1}{25}=\frac{1}{9}\left(x+1\right)^{2}
Use the distributive property to multiply \frac{1}{25} by x^{2}-2x+1.
\frac{1}{25}x^{2}-\frac{2}{25}x+\frac{1}{25}=\frac{1}{9}\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{1}{25}x^{2}-\frac{2}{25}x+\frac{1}{25}=\frac{1}{9}x^{2}+\frac{2}{9}x+\frac{1}{9}
Use the distributive property to multiply \frac{1}{9} by x^{2}+2x+1.
\frac{1}{25}x^{2}-\frac{2}{25}x+\frac{1}{25}-\frac{1}{9}x^{2}=\frac{2}{9}x+\frac{1}{9}
Subtract \frac{1}{9}x^{2} from both sides.
-\frac{16}{225}x^{2}-\frac{2}{25}x+\frac{1}{25}=\frac{2}{9}x+\frac{1}{9}
Combine \frac{1}{25}x^{2} and -\frac{1}{9}x^{2} to get -\frac{16}{225}x^{2}.
-\frac{16}{225}x^{2}-\frac{2}{25}x+\frac{1}{25}-\frac{2}{9}x=\frac{1}{9}
Subtract \frac{2}{9}x from both sides.
-\frac{16}{225}x^{2}-\frac{68}{225}x+\frac{1}{25}=\frac{1}{9}
Combine -\frac{2}{25}x and -\frac{2}{9}x to get -\frac{68}{225}x.
-\frac{16}{225}x^{2}-\frac{68}{225}x=\frac{1}{9}-\frac{1}{25}
Subtract \frac{1}{25} from both sides.
-\frac{16}{225}x^{2}-\frac{68}{225}x=\frac{16}{225}
Subtract \frac{1}{25} from \frac{1}{9} to get \frac{16}{225}.
\frac{-\frac{16}{225}x^{2}-\frac{68}{225}x}{-\frac{16}{225}}=\frac{\frac{16}{225}}{-\frac{16}{225}}
Divide both sides of the equation by -\frac{16}{225}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{68}{225}}{-\frac{16}{225}}\right)x=\frac{\frac{16}{225}}{-\frac{16}{225}}
Dividing by -\frac{16}{225} undoes the multiplication by -\frac{16}{225}.
x^{2}+\frac{17}{4}x=\frac{\frac{16}{225}}{-\frac{16}{225}}
Divide -\frac{68}{225} by -\frac{16}{225} by multiplying -\frac{68}{225} by the reciprocal of -\frac{16}{225}.
x^{2}+\frac{17}{4}x=-1
Divide \frac{16}{225} by -\frac{16}{225} by multiplying \frac{16}{225} by the reciprocal of -\frac{16}{225}.
x^{2}+\frac{17}{4}x+\left(\frac{17}{8}\right)^{2}=-1+\left(\frac{17}{8}\right)^{2}
Divide \frac{17}{4}, the coefficient of the x term, by 2 to get \frac{17}{8}. Then add the square of \frac{17}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{4}x+\frac{289}{64}=-1+\frac{289}{64}
Square \frac{17}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17}{4}x+\frac{289}{64}=\frac{225}{64}
Add -1 to \frac{289}{64}.
\left(x+\frac{17}{8}\right)^{2}=\frac{225}{64}
Factor x^{2}+\frac{17}{4}x+\frac{289}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
Take the square root of both sides of the equation.
x+\frac{17}{8}=\frac{15}{8} x+\frac{17}{8}=-\frac{15}{8}
Simplify.
x=-\frac{1}{4} x=-4
Subtract \frac{17}{8} from both sides of the equation.