Solve for x
x=\frac{\sqrt{65501}-249}{50}\approx 0.13863263
x=\frac{-\sqrt{65501}-249}{50}\approx -10.09863263
Graph
Share
Copied to clipboard
25\left(x+10\right)\times \frac{1}{25}+25=x\times 25\left(x+10\right)
Variable x cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by 25\left(x+10\right), the least common multiple of 25,10+x.
\left(25x+250\right)\times \frac{1}{25}+25=x\times 25\left(x+10\right)
Use the distributive property to multiply 25 by x+10.
x+10+25=x\times 25\left(x+10\right)
Use the distributive property to multiply 25x+250 by \frac{1}{25}.
x+35=x\times 25\left(x+10\right)
Add 10 and 25 to get 35.
x+35=25x^{2}+10x\times 25
Use the distributive property to multiply x\times 25 by x+10.
x+35=25x^{2}+250x
Multiply 10 and 25 to get 250.
x+35-25x^{2}=250x
Subtract 25x^{2} from both sides.
x+35-25x^{2}-250x=0
Subtract 250x from both sides.
-249x+35-25x^{2}=0
Combine x and -250x to get -249x.
-25x^{2}-249x+35=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-249\right)±\sqrt{\left(-249\right)^{2}-4\left(-25\right)\times 35}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, -249 for b, and 35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-249\right)±\sqrt{62001-4\left(-25\right)\times 35}}{2\left(-25\right)}
Square -249.
x=\frac{-\left(-249\right)±\sqrt{62001+100\times 35}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-\left(-249\right)±\sqrt{62001+3500}}{2\left(-25\right)}
Multiply 100 times 35.
x=\frac{-\left(-249\right)±\sqrt{65501}}{2\left(-25\right)}
Add 62001 to 3500.
x=\frac{249±\sqrt{65501}}{2\left(-25\right)}
The opposite of -249 is 249.
x=\frac{249±\sqrt{65501}}{-50}
Multiply 2 times -25.
x=\frac{\sqrt{65501}+249}{-50}
Now solve the equation x=\frac{249±\sqrt{65501}}{-50} when ± is plus. Add 249 to \sqrt{65501}.
x=\frac{-\sqrt{65501}-249}{50}
Divide 249+\sqrt{65501} by -50.
x=\frac{249-\sqrt{65501}}{-50}
Now solve the equation x=\frac{249±\sqrt{65501}}{-50} when ± is minus. Subtract \sqrt{65501} from 249.
x=\frac{\sqrt{65501}-249}{50}
Divide 249-\sqrt{65501} by -50.
x=\frac{-\sqrt{65501}-249}{50} x=\frac{\sqrt{65501}-249}{50}
The equation is now solved.
25\left(x+10\right)\times \frac{1}{25}+25=x\times 25\left(x+10\right)
Variable x cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by 25\left(x+10\right), the least common multiple of 25,10+x.
\left(25x+250\right)\times \frac{1}{25}+25=x\times 25\left(x+10\right)
Use the distributive property to multiply 25 by x+10.
x+10+25=x\times 25\left(x+10\right)
Use the distributive property to multiply 25x+250 by \frac{1}{25}.
x+35=x\times 25\left(x+10\right)
Add 10 and 25 to get 35.
x+35=25x^{2}+10x\times 25
Use the distributive property to multiply x\times 25 by x+10.
x+35=25x^{2}+250x
Multiply 10 and 25 to get 250.
x+35-25x^{2}=250x
Subtract 25x^{2} from both sides.
x+35-25x^{2}-250x=0
Subtract 250x from both sides.
-249x+35-25x^{2}=0
Combine x and -250x to get -249x.
-249x-25x^{2}=-35
Subtract 35 from both sides. Anything subtracted from zero gives its negation.
-25x^{2}-249x=-35
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-25x^{2}-249x}{-25}=-\frac{35}{-25}
Divide both sides by -25.
x^{2}+\left(-\frac{249}{-25}\right)x=-\frac{35}{-25}
Dividing by -25 undoes the multiplication by -25.
x^{2}+\frac{249}{25}x=-\frac{35}{-25}
Divide -249 by -25.
x^{2}+\frac{249}{25}x=\frac{7}{5}
Reduce the fraction \frac{-35}{-25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{249}{25}x+\left(\frac{249}{50}\right)^{2}=\frac{7}{5}+\left(\frac{249}{50}\right)^{2}
Divide \frac{249}{25}, the coefficient of the x term, by 2 to get \frac{249}{50}. Then add the square of \frac{249}{50} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{249}{25}x+\frac{62001}{2500}=\frac{7}{5}+\frac{62001}{2500}
Square \frac{249}{50} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{249}{25}x+\frac{62001}{2500}=\frac{65501}{2500}
Add \frac{7}{5} to \frac{62001}{2500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{249}{50}\right)^{2}=\frac{65501}{2500}
Factor x^{2}+\frac{249}{25}x+\frac{62001}{2500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{249}{50}\right)^{2}}=\sqrt{\frac{65501}{2500}}
Take the square root of both sides of the equation.
x+\frac{249}{50}=\frac{\sqrt{65501}}{50} x+\frac{249}{50}=-\frac{\sqrt{65501}}{50}
Simplify.
x=\frac{\sqrt{65501}-249}{50} x=\frac{-\sqrt{65501}-249}{50}
Subtract \frac{249}{50} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}