Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{24}=\left(5n-10\right)\left(n-3\right)
Use the distributive property to multiply 5 by n-2.
\frac{1}{24}=5n^{2}-25n+30
Use the distributive property to multiply 5n-10 by n-3 and combine like terms.
5n^{2}-25n+30=\frac{1}{24}
Swap sides so that all variable terms are on the left hand side.
5n^{2}-25n+30-\frac{1}{24}=0
Subtract \frac{1}{24} from both sides.
5n^{2}-25n+\frac{719}{24}=0
Subtract \frac{1}{24} from 30 to get \frac{719}{24}.
n=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 5\times \frac{719}{24}}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -25 for b, and \frac{719}{24} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-25\right)±\sqrt{625-4\times 5\times \frac{719}{24}}}{2\times 5}
Square -25.
n=\frac{-\left(-25\right)±\sqrt{625-20\times \frac{719}{24}}}{2\times 5}
Multiply -4 times 5.
n=\frac{-\left(-25\right)±\sqrt{625-\frac{3595}{6}}}{2\times 5}
Multiply -20 times \frac{719}{24}.
n=\frac{-\left(-25\right)±\sqrt{\frac{155}{6}}}{2\times 5}
Add 625 to -\frac{3595}{6}.
n=\frac{-\left(-25\right)±\frac{\sqrt{930}}{6}}{2\times 5}
Take the square root of \frac{155}{6}.
n=\frac{25±\frac{\sqrt{930}}{6}}{2\times 5}
The opposite of -25 is 25.
n=\frac{25±\frac{\sqrt{930}}{6}}{10}
Multiply 2 times 5.
n=\frac{\frac{\sqrt{930}}{6}+25}{10}
Now solve the equation n=\frac{25±\frac{\sqrt{930}}{6}}{10} when ± is plus. Add 25 to \frac{\sqrt{930}}{6}.
n=\frac{\sqrt{930}}{60}+\frac{5}{2}
Divide 25+\frac{\sqrt{930}}{6} by 10.
n=\frac{-\frac{\sqrt{930}}{6}+25}{10}
Now solve the equation n=\frac{25±\frac{\sqrt{930}}{6}}{10} when ± is minus. Subtract \frac{\sqrt{930}}{6} from 25.
n=-\frac{\sqrt{930}}{60}+\frac{5}{2}
Divide 25-\frac{\sqrt{930}}{6} by 10.
n=\frac{\sqrt{930}}{60}+\frac{5}{2} n=-\frac{\sqrt{930}}{60}+\frac{5}{2}
The equation is now solved.
\frac{1}{24}=\left(5n-10\right)\left(n-3\right)
Use the distributive property to multiply 5 by n-2.
\frac{1}{24}=5n^{2}-25n+30
Use the distributive property to multiply 5n-10 by n-3 and combine like terms.
5n^{2}-25n+30=\frac{1}{24}
Swap sides so that all variable terms are on the left hand side.
5n^{2}-25n=\frac{1}{24}-30
Subtract 30 from both sides.
5n^{2}-25n=-\frac{719}{24}
Subtract 30 from \frac{1}{24} to get -\frac{719}{24}.
\frac{5n^{2}-25n}{5}=-\frac{\frac{719}{24}}{5}
Divide both sides by 5.
n^{2}+\left(-\frac{25}{5}\right)n=-\frac{\frac{719}{24}}{5}
Dividing by 5 undoes the multiplication by 5.
n^{2}-5n=-\frac{\frac{719}{24}}{5}
Divide -25 by 5.
n^{2}-5n=-\frac{719}{120}
Divide -\frac{719}{24} by 5.
n^{2}-5n+\left(-\frac{5}{2}\right)^{2}=-\frac{719}{120}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-5n+\frac{25}{4}=-\frac{719}{120}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-5n+\frac{25}{4}=\frac{31}{120}
Add -\frac{719}{120} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{5}{2}\right)^{2}=\frac{31}{120}
Factor n^{2}-5n+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{5}{2}\right)^{2}}=\sqrt{\frac{31}{120}}
Take the square root of both sides of the equation.
n-\frac{5}{2}=\frac{\sqrt{930}}{60} n-\frac{5}{2}=-\frac{\sqrt{930}}{60}
Simplify.
n=\frac{\sqrt{930}}{60}+\frac{5}{2} n=-\frac{\sqrt{930}}{60}+\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.