Evaluate
\frac{2759}{9555}\approx 0.288749346
Factor
\frac{31 \cdot 89}{3 \cdot 5 \cdot 7 ^ {2} \cdot 13} = 0.288749345892203
Share
Copied to clipboard
\frac{13}{273}+\frac{63}{273}-\frac{1}{49}+\frac{2}{65}
Least common multiple of 21 and 13 is 273. Convert \frac{1}{21} and \frac{3}{13} to fractions with denominator 273.
\frac{13+63}{273}-\frac{1}{49}+\frac{2}{65}
Since \frac{13}{273} and \frac{63}{273} have the same denominator, add them by adding their numerators.
\frac{76}{273}-\frac{1}{49}+\frac{2}{65}
Add 13 and 63 to get 76.
\frac{532}{1911}-\frac{39}{1911}+\frac{2}{65}
Least common multiple of 273 and 49 is 1911. Convert \frac{76}{273} and \frac{1}{49} to fractions with denominator 1911.
\frac{532-39}{1911}+\frac{2}{65}
Since \frac{532}{1911} and \frac{39}{1911} have the same denominator, subtract them by subtracting their numerators.
\frac{493}{1911}+\frac{2}{65}
Subtract 39 from 532 to get 493.
\frac{2465}{9555}+\frac{294}{9555}
Least common multiple of 1911 and 65 is 9555. Convert \frac{493}{1911} and \frac{2}{65} to fractions with denominator 9555.
\frac{2465+294}{9555}
Since \frac{2465}{9555} and \frac{294}{9555} have the same denominator, add them by adding their numerators.
\frac{2759}{9555}
Add 2465 and 294 to get 2759.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}