Evaluate
-\frac{1}{2}+\frac{1}{2x}+\frac{3}{4x^{2}}
Factor
-\frac{\frac{1}{2}\left(x-\frac{1-\sqrt{7}}{2}\right)\left(x-\frac{\sqrt{7}+1}{2}\right)}{x^{2}}
Graph
Share
Copied to clipboard
\frac{1}{2x}-\frac{1}{2}+\frac{12}{16x^{2}}
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
\frac{1}{2x}-\frac{x}{2x}+\frac{12}{16x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x and 2 is 2x. Multiply \frac{1}{2} times \frac{x}{x}.
\frac{1-x}{2x}+\frac{12}{16x^{2}}
Since \frac{1}{2x} and \frac{x}{2x} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(1-x\right)\times 8x}{16x^{2}}+\frac{12}{16x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x and 16x^{2} is 16x^{2}. Multiply \frac{1-x}{2x} times \frac{8x}{8x}.
\frac{\left(1-x\right)\times 8x+12}{16x^{2}}
Since \frac{\left(1-x\right)\times 8x}{16x^{2}} and \frac{12}{16x^{2}} have the same denominator, add them by adding their numerators.
\frac{8x-8x^{2}+12}{16x^{2}}
Do the multiplications in \left(1-x\right)\times 8x+12.
\frac{-2\times 4\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{16x^{2}}
Factor the expressions that are not already factored in \frac{8x-8x^{2}+12}{16x^{2}}.
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{2x^{2}}
Cancel out 2\times 4 in both numerator and denominator.
\frac{\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
Cancel out -1 in both numerator and denominator.
\frac{\left(x+\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
To find the opposite of -\frac{1}{2}\sqrt{7}+\frac{1}{2}, find the opposite of each term.
\frac{\left(x+\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)}{-2x^{2}}
To find the opposite of \frac{1}{2}\sqrt{7}+\frac{1}{2}, find the opposite of each term.
\frac{x^{2}-x-\frac{1}{4}\left(\sqrt{7}\right)^{2}+\frac{1}{4}}{-2x^{2}}
Use the distributive property to multiply x+\frac{1}{2}\sqrt{7}-\frac{1}{2} by x-\frac{1}{2}\sqrt{7}-\frac{1}{2} and combine like terms.
\frac{x^{2}-x-\frac{1}{4}\times 7+\frac{1}{4}}{-2x^{2}}
The square of \sqrt{7} is 7.
\frac{x^{2}-x-\frac{7}{4}+\frac{1}{4}}{-2x^{2}}
Multiply -\frac{1}{4} and 7 to get -\frac{7}{4}.
\frac{x^{2}-x-\frac{3}{2}}{-2x^{2}}
Add -\frac{7}{4} and \frac{1}{4} to get -\frac{3}{2}.
\frac{\frac{1}{2}\times 2\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-x^{2}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{1}{2}x^{2}-\frac{1}{2}x-\frac{3}{4}}{-x^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}