Solve for x
x=\frac{2\sqrt{19}-8}{3}\approx 0.239265962
x=\frac{-2\sqrt{19}-8}{3}\approx -5.572599296
Graph
Share
Copied to clipboard
4+8x\times 5=\frac{3}{8}x\times 8x+8x\times 7
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x, the least common multiple of 2x,8.
4+40x=\frac{3}{8}x\times 8x+8x\times 7
Multiply 8 and 5 to get 40.
4+40x=\frac{3}{8}x^{2}\times 8+8x\times 7
Multiply x and x to get x^{2}.
4+40x=3x^{2}+8x\times 7
Multiply \frac{3}{8} and 8 to get 3.
4+40x=3x^{2}+56x
Multiply 8 and 7 to get 56.
4+40x-3x^{2}=56x
Subtract 3x^{2} from both sides.
4+40x-3x^{2}-56x=0
Subtract 56x from both sides.
4-16x-3x^{2}=0
Combine 40x and -56x to get -16x.
-3x^{2}-16x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-3\right)\times 4}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -16 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-3\right)\times 4}}{2\left(-3\right)}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256+12\times 4}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-16\right)±\sqrt{256+48}}{2\left(-3\right)}
Multiply 12 times 4.
x=\frac{-\left(-16\right)±\sqrt{304}}{2\left(-3\right)}
Add 256 to 48.
x=\frac{-\left(-16\right)±4\sqrt{19}}{2\left(-3\right)}
Take the square root of 304.
x=\frac{16±4\sqrt{19}}{2\left(-3\right)}
The opposite of -16 is 16.
x=\frac{16±4\sqrt{19}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{19}+16}{-6}
Now solve the equation x=\frac{16±4\sqrt{19}}{-6} when ± is plus. Add 16 to 4\sqrt{19}.
x=\frac{-2\sqrt{19}-8}{3}
Divide 16+4\sqrt{19} by -6.
x=\frac{16-4\sqrt{19}}{-6}
Now solve the equation x=\frac{16±4\sqrt{19}}{-6} when ± is minus. Subtract 4\sqrt{19} from 16.
x=\frac{2\sqrt{19}-8}{3}
Divide 16-4\sqrt{19} by -6.
x=\frac{-2\sqrt{19}-8}{3} x=\frac{2\sqrt{19}-8}{3}
The equation is now solved.
4+8x\times 5=\frac{3}{8}x\times 8x+8x\times 7
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x, the least common multiple of 2x,8.
4+40x=\frac{3}{8}x\times 8x+8x\times 7
Multiply 8 and 5 to get 40.
4+40x=\frac{3}{8}x^{2}\times 8+8x\times 7
Multiply x and x to get x^{2}.
4+40x=3x^{2}+8x\times 7
Multiply \frac{3}{8} and 8 to get 3.
4+40x=3x^{2}+56x
Multiply 8 and 7 to get 56.
4+40x-3x^{2}=56x
Subtract 3x^{2} from both sides.
4+40x-3x^{2}-56x=0
Subtract 56x from both sides.
4-16x-3x^{2}=0
Combine 40x and -56x to get -16x.
-16x-3x^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
-3x^{2}-16x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-16x}{-3}=-\frac{4}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{16}{-3}\right)x=-\frac{4}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{16}{3}x=-\frac{4}{-3}
Divide -16 by -3.
x^{2}+\frac{16}{3}x=\frac{4}{3}
Divide -4 by -3.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=\frac{4}{3}+\left(\frac{8}{3}\right)^{2}
Divide \frac{16}{3}, the coefficient of the x term, by 2 to get \frac{8}{3}. Then add the square of \frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{4}{3}+\frac{64}{9}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{76}{9}
Add \frac{4}{3} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{3}\right)^{2}=\frac{76}{9}
Factor x^{2}+\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{\frac{76}{9}}
Take the square root of both sides of the equation.
x+\frac{8}{3}=\frac{2\sqrt{19}}{3} x+\frac{8}{3}=-\frac{2\sqrt{19}}{3}
Simplify.
x=\frac{2\sqrt{19}-8}{3} x=\frac{-2\sqrt{19}-8}{3}
Subtract \frac{8}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}