Solve for x
x=-\frac{3y}{2\left(2-9y\right)}
y\neq 0\text{ and }y\neq \frac{2}{9}
Solve for y
y=-\frac{4x}{3\left(1-6x\right)}
x\neq 0\text{ and }x\neq \frac{1}{6}
Graph
Share
Copied to clipboard
3y+2x\times 2=18xy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6xy, the least common multiple of 2x,3y.
3y+4x=18xy
Multiply 2 and 2 to get 4.
3y+4x-18xy=0
Subtract 18xy from both sides.
4x-18xy=-3y
Subtract 3y from both sides. Anything subtracted from zero gives its negation.
\left(4-18y\right)x=-3y
Combine all terms containing x.
\frac{\left(4-18y\right)x}{4-18y}=-\frac{3y}{4-18y}
Divide both sides by -18y+4.
x=-\frac{3y}{4-18y}
Dividing by -18y+4 undoes the multiplication by -18y+4.
x=-\frac{3y}{2\left(2-9y\right)}
Divide -3y by -18y+4.
x=-\frac{3y}{2\left(2-9y\right)}\text{, }x\neq 0
Variable x cannot be equal to 0.
3y+2x\times 2=18xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6xy, the least common multiple of 2x,3y.
3y+4x=18xy
Multiply 2 and 2 to get 4.
3y+4x-18xy=0
Subtract 18xy from both sides.
3y-18xy=-4x
Subtract 4x from both sides. Anything subtracted from zero gives its negation.
\left(3-18x\right)y=-4x
Combine all terms containing y.
\frac{\left(3-18x\right)y}{3-18x}=-\frac{4x}{3-18x}
Divide both sides by -18x+3.
y=-\frac{4x}{3-18x}
Dividing by -18x+3 undoes the multiplication by -18x+3.
y=-\frac{4x}{3\left(1-6x\right)}
Divide -4x by -18x+3.
y=-\frac{4x}{3\left(1-6x\right)}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}