Evaluate
\frac{1}{\left(2x+1\right)\left(2x+3\right)}
Differentiate w.r.t. x
-\frac{8\left(x+1\right)}{\left(\left(2x+1\right)\left(2x+3\right)\right)^{2}}
Graph
Share
Copied to clipboard
\frac{1}{\left(x+1\right)\left(2x+1\right)}+\frac{1}{\left(x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3}
Factor 2x^{2}+3x+1. Factor 2x^{2}+5x+3.
\frac{2x+3}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}+\frac{2x+1}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(2x+1\right) and \left(x+1\right)\left(2x+3\right) is \left(x+1\right)\left(2x+1\right)\left(2x+3\right). Multiply \frac{1}{\left(x+1\right)\left(2x+1\right)} times \frac{2x+3}{2x+3}. Multiply \frac{1}{\left(x+1\right)\left(2x+3\right)} times \frac{2x+1}{2x+1}.
\frac{2x+3+2x+1}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3}
Since \frac{2x+3}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)} and \frac{2x+1}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{4x+4}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3}
Combine like terms in 2x+3+2x+1.
\frac{4\left(x+1\right)}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3}
Factor the expressions that are not already factored in \frac{4x+4}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}.
\frac{4}{\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3}
Cancel out x+1 in both numerator and denominator.
\frac{4}{\left(2x+1\right)\left(2x+3\right)}-\frac{3}{\left(2x+1\right)\left(2x+3\right)}
Factor 4x^{2}+8x+3.
\frac{1}{\left(2x+1\right)\left(2x+3\right)}
Since \frac{4}{\left(2x+1\right)\left(2x+3\right)} and \frac{3}{\left(2x+1\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators. Subtract 3 from 4 to get 1.
\frac{1}{4x^{2}+8x+3}
Expand \left(2x+1\right)\left(2x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(x+1\right)\left(2x+1\right)}+\frac{1}{\left(x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3})
Factor 2x^{2}+3x+1. Factor 2x^{2}+5x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}+\frac{2x+1}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(2x+1\right) and \left(x+1\right)\left(2x+3\right) is \left(x+1\right)\left(2x+1\right)\left(2x+3\right). Multiply \frac{1}{\left(x+1\right)\left(2x+1\right)} times \frac{2x+3}{2x+3}. Multiply \frac{1}{\left(x+1\right)\left(2x+3\right)} times \frac{2x+1}{2x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3+2x+1}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3})
Since \frac{2x+3}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)} and \frac{2x+1}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+4}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3})
Combine like terms in 2x+3+2x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+1\right)}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3})
Factor the expressions that are not already factored in \frac{4x+4}{\left(x+1\right)\left(2x+1\right)\left(2x+3\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{\left(2x+1\right)\left(2x+3\right)}-\frac{3}{4x^{2}+8x+3})
Cancel out x+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{\left(2x+1\right)\left(2x+3\right)}-\frac{3}{\left(2x+1\right)\left(2x+3\right)})
Factor 4x^{2}+8x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(2x+1\right)\left(2x+3\right)})
Since \frac{4}{\left(2x+1\right)\left(2x+3\right)} and \frac{3}{\left(2x+1\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators. Subtract 3 from 4 to get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4x^{2}+8x+3})
Use the distributive property to multiply 2x+1 by 2x+3 and combine like terms.
-\left(4x^{2}+8x^{1}+3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2}+8x^{1}+3)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(4x^{2}+8x^{1}+3\right)^{-2}\left(2\times 4x^{2-1}+8x^{1-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(4x^{2}+8x^{1}+3\right)^{-2}\left(-8x^{1}-8x^{0}\right)
Simplify.
\left(4x^{2}+8x+3\right)^{-2}\left(-8x-8x^{0}\right)
For any term t, t^{1}=t.
\left(4x^{2}+8x+3\right)^{-2}\left(-8x-8\right)
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}