Evaluate
\frac{7}{5\left(2t+5\right)}
Factor
\frac{7}{5\left(2t+5\right)}
Share
Copied to clipboard
\frac{1}{2t+5}-\frac{2}{5\left(-2t+5\right)}-\frac{4}{4t^{2}-25}
Factor 25-10t.
\frac{5\left(-2t+5\right)}{5\left(-2t+5\right)\left(2t+5\right)}-\frac{2\left(2t+5\right)}{5\left(-2t+5\right)\left(2t+5\right)}-\frac{4}{4t^{2}-25}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2t+5 and 5\left(-2t+5\right) is 5\left(-2t+5\right)\left(2t+5\right). Multiply \frac{1}{2t+5} times \frac{5\left(-2t+5\right)}{5\left(-2t+5\right)}. Multiply \frac{2}{5\left(-2t+5\right)} times \frac{2t+5}{2t+5}.
\frac{5\left(-2t+5\right)-2\left(2t+5\right)}{5\left(-2t+5\right)\left(2t+5\right)}-\frac{4}{4t^{2}-25}
Since \frac{5\left(-2t+5\right)}{5\left(-2t+5\right)\left(2t+5\right)} and \frac{2\left(2t+5\right)}{5\left(-2t+5\right)\left(2t+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-10t+25-4t-10}{5\left(-2t+5\right)\left(2t+5\right)}-\frac{4}{4t^{2}-25}
Do the multiplications in 5\left(-2t+5\right)-2\left(2t+5\right).
\frac{-14t+15}{5\left(-2t+5\right)\left(2t+5\right)}-\frac{4}{4t^{2}-25}
Combine like terms in -10t+25-4t-10.
\frac{-14t+15}{5\left(-2t+5\right)\left(2t+5\right)}-\frac{4}{\left(2t-5\right)\left(2t+5\right)}
Factor 4t^{2}-25.
\frac{-\left(-14t+15\right)}{5\left(2t-5\right)\left(2t+5\right)}-\frac{4\times 5}{5\left(2t-5\right)\left(2t+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\left(-2t+5\right)\left(2t+5\right) and \left(2t-5\right)\left(2t+5\right) is 5\left(2t-5\right)\left(2t+5\right). Multiply \frac{-14t+15}{5\left(-2t+5\right)\left(2t+5\right)} times \frac{-1}{-1}. Multiply \frac{4}{\left(2t-5\right)\left(2t+5\right)} times \frac{5}{5}.
\frac{-\left(-14t+15\right)-4\times 5}{5\left(2t-5\right)\left(2t+5\right)}
Since \frac{-\left(-14t+15\right)}{5\left(2t-5\right)\left(2t+5\right)} and \frac{4\times 5}{5\left(2t-5\right)\left(2t+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{14t-15-20}{5\left(2t-5\right)\left(2t+5\right)}
Do the multiplications in -\left(-14t+15\right)-4\times 5.
\frac{14t-35}{5\left(2t-5\right)\left(2t+5\right)}
Combine like terms in 14t-15-20.
\frac{7\left(2t-5\right)}{5\left(2t-5\right)\left(2t+5\right)}
Factor the expressions that are not already factored in \frac{14t-35}{5\left(2t-5\right)\left(2t+5\right)}.
\frac{7}{5\left(2t+5\right)}
Cancel out 2t-5 in both numerator and denominator.
\frac{7}{10t+25}
Expand 5\left(2t+5\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}