Evaluate
\frac{-p^{2}-p+q-4}{6p^{2}}
Expand
\frac{-p^{2}-p+q-4}{6p^{2}}
Quiz
Algebra
5 problems similar to:
\frac { 1 } { 2 p } - \frac { ( p + 2 ) ^ { 2 } - q } { 6 p ^ { 2 } }
Share
Copied to clipboard
\frac{3p}{6p^{2}}-\frac{\left(p+2\right)^{2}-q}{6p^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2p and 6p^{2} is 6p^{2}. Multiply \frac{1}{2p} times \frac{3p}{3p}.
\frac{3p-\left(\left(p+2\right)^{2}-q\right)}{6p^{2}}
Since \frac{3p}{6p^{2}} and \frac{\left(p+2\right)^{2}-q}{6p^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{3p-p^{2}-4p-4+q}{6p^{2}}
Do the multiplications in 3p-\left(\left(p+2\right)^{2}-q\right).
\frac{-p-p^{2}-4+q}{6p^{2}}
Combine like terms in 3p-p^{2}-4p-4+q.
\frac{3p}{6p^{2}}-\frac{\left(p+2\right)^{2}-q}{6p^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2p and 6p^{2} is 6p^{2}. Multiply \frac{1}{2p} times \frac{3p}{3p}.
\frac{3p-\left(\left(p+2\right)^{2}-q\right)}{6p^{2}}
Since \frac{3p}{6p^{2}} and \frac{\left(p+2\right)^{2}-q}{6p^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{3p-p^{2}-4p-4+q}{6p^{2}}
Do the multiplications in 3p-\left(\left(p+2\right)^{2}-q\right).
\frac{-p-p^{2}-4+q}{6p^{2}}
Combine like terms in 3p-p^{2}-4p-4+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}