Evaluate
\frac{2\left(m-1\right)^{2}}{\left(2m-1\right)\left(2m^{2}-2m+1\right)}
Differentiate w.r.t. m
\frac{4\left(m-1\right)\left(1-4m+6m^{2}-2m^{3}\right)}{\left(2m-1\right)^{2}\left(4m^{4}-8m^{3}+8m^{2}-4m+1\right)}
Quiz
Polynomial
5 problems similar to:
\frac { 1 } { 2 m - 1 } - \frac { 1 } { 2 m ^ { 2 } - 2 m + 1 }
Share
Copied to clipboard
\frac{2m^{2}-2m+1}{\left(2m-1\right)\left(2m^{2}-2m+1\right)}-\frac{2m-1}{\left(2m-1\right)\left(2m^{2}-2m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2m-1 and 2m^{2}-2m+1 is \left(2m-1\right)\left(2m^{2}-2m+1\right). Multiply \frac{1}{2m-1} times \frac{2m^{2}-2m+1}{2m^{2}-2m+1}. Multiply \frac{1}{2m^{2}-2m+1} times \frac{2m-1}{2m-1}.
\frac{2m^{2}-2m+1-\left(2m-1\right)}{\left(2m-1\right)\left(2m^{2}-2m+1\right)}
Since \frac{2m^{2}-2m+1}{\left(2m-1\right)\left(2m^{2}-2m+1\right)} and \frac{2m-1}{\left(2m-1\right)\left(2m^{2}-2m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2m^{2}-2m+1-2m+1}{\left(2m-1\right)\left(2m^{2}-2m+1\right)}
Do the multiplications in 2m^{2}-2m+1-\left(2m-1\right).
\frac{2m^{2}-4m+2}{\left(2m-1\right)\left(2m^{2}-2m+1\right)}
Combine like terms in 2m^{2}-2m+1-2m+1.
\frac{2m^{2}-4m+2}{4m^{3}-6m^{2}+4m-1}
Expand \left(2m-1\right)\left(2m^{2}-2m+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}