Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2a\times 3a}
Multiply \frac{1}{2a} times \frac{1}{3a} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2a^{2}\times 3}
Multiply a and a to get a^{2}.
\frac{1}{6a^{2}}
Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{2a\times 3a})
Multiply \frac{1}{2a} times \frac{1}{3a} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{2a^{2}\times 3})
Multiply a and a to get a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{6a^{2}})
Multiply 2 and 3 to get 6.
-\left(6a^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(6a^{2})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(6a^{2}\right)^{-2}\times 2\times 6a^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-12a^{1}\times \left(6a^{2}\right)^{-2}
Simplify.
-12a\times \left(6a^{2}\right)^{-2}
For any term t, t^{1}=t.