Evaluate
-\frac{3}{5}+\frac{1}{5}i=-0.6+0.2i
Real Part
-\frac{3}{5} = -0.6
Share
Copied to clipboard
\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{1-i}{i\left(1+i\right)}
Multiply both numerator and denominator of \frac{1}{2-i} by the complex conjugate of the denominator, 2+i.
\frac{1\left(2+i\right)}{2^{2}-i^{2}}+\frac{1-i}{i\left(1+i\right)}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(2+i\right)}{5}+\frac{1-i}{i\left(1+i\right)}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2+i}{5}+\frac{1-i}{i\left(1+i\right)}
Multiply 1 and 2+i to get 2+i.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i\left(1+i\right)}
Divide 2+i by 5 to get \frac{2}{5}+\frac{1}{5}i.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i+i^{2}}
Multiply i times 1+i.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i-1}
By definition, i^{2} is -1.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{-1+i}
Reorder the terms.
\frac{2}{5}+\frac{1}{5}i-1
Divide 1-i by -1+i to get -1.
\frac{2}{5}-1+\frac{1}{5}i
Subtract 1 from \frac{2}{5}+\frac{1}{5}i by subtracting corresponding real and imaginary parts.
-\frac{3}{5}+\frac{1}{5}i
Subtract 1 from \frac{2}{5} to get -\frac{3}{5}.
Re(\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{1-i}{i\left(1+i\right)})
Multiply both numerator and denominator of \frac{1}{2-i} by the complex conjugate of the denominator, 2+i.
Re(\frac{1\left(2+i\right)}{2^{2}-i^{2}}+\frac{1-i}{i\left(1+i\right)})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(2+i\right)}{5}+\frac{1-i}{i\left(1+i\right)})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2+i}{5}+\frac{1-i}{i\left(1+i\right)})
Multiply 1 and 2+i to get 2+i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i\left(1+i\right)})
Divide 2+i by 5 to get \frac{2}{5}+\frac{1}{5}i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i+i^{2}})
Multiply i times 1+i.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i-1})
By definition, i^{2} is -1.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{-1+i})
Reorder the terms.
Re(\frac{2}{5}+\frac{1}{5}i-1)
Divide 1-i by -1+i to get -1.
Re(\frac{2}{5}-1+\frac{1}{5}i)
Subtract 1 from \frac{2}{5}+\frac{1}{5}i by subtracting corresponding real and imaginary parts.
Re(-\frac{3}{5}+\frac{1}{5}i)
Subtract 1 from \frac{2}{5} to get -\frac{3}{5}.
-\frac{3}{5}
The real part of -\frac{3}{5}+\frac{1}{5}i is -\frac{3}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}