Solve for x
x=-\frac{1}{3y-2}
y\neq \frac{2}{3}
Solve for y
y=\frac{2}{3}-\frac{1}{3x}
x\neq 0
Graph
Share
Copied to clipboard
1=x\left(-3y+2\right)
Multiply both sides of the equation by -3y+2.
1=-3xy+2x
Use the distributive property to multiply x by -3y+2.
-3xy+2x=1
Swap sides so that all variable terms are on the left hand side.
\left(-3y+2\right)x=1
Combine all terms containing x.
\left(2-3y\right)x=1
The equation is in standard form.
\frac{\left(2-3y\right)x}{2-3y}=\frac{1}{2-3y}
Divide both sides by 2-3y.
x=\frac{1}{2-3y}
Dividing by 2-3y undoes the multiplication by 2-3y.
1=x\left(-3y+2\right)
Variable y cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by -3y+2.
1=-3xy+2x
Use the distributive property to multiply x by -3y+2.
-3xy+2x=1
Swap sides so that all variable terms are on the left hand side.
-3xy=1-2x
Subtract 2x from both sides.
\left(-3x\right)y=1-2x
The equation is in standard form.
\frac{\left(-3x\right)y}{-3x}=\frac{1-2x}{-3x}
Divide both sides by -3x.
y=\frac{1-2x}{-3x}
Dividing by -3x undoes the multiplication by -3x.
y=\frac{2}{3}-\frac{1}{3x}
Divide 1-2x by -3x.
y=\frac{2}{3}-\frac{1}{3x}\text{, }y\neq \frac{2}{3}
Variable y cannot be equal to \frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}