Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Rationalize the denominator of \frac{1}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{2+\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2+\sqrt{3}}{4-3}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Square 2. Square \sqrt{3}.
\frac{2+\sqrt{3}}{1}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Subtract 3 from 4 to get 1.
2+\sqrt{3}+\frac{1}{2+\sqrt{3}}+\frac{\sqrt{8}}{\sqrt{2}}
Anything divided by one gives itself.
2+\sqrt{3}+\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{8}}{\sqrt{2}}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
2+\sqrt{3}+\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{8}}{\sqrt{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2+\sqrt{3}+\frac{2-\sqrt{3}}{4-3}+\frac{\sqrt{8}}{\sqrt{2}}
Square 2. Square \sqrt{3}.
2+\sqrt{3}+\frac{2-\sqrt{3}}{1}+\frac{\sqrt{8}}{\sqrt{2}}
Subtract 3 from 4 to get 1.
2+\sqrt{3}+2-\sqrt{3}+\frac{\sqrt{8}}{\sqrt{2}}
Anything divided by one gives itself.
4+\sqrt{3}-\sqrt{3}+\frac{\sqrt{8}}{\sqrt{2}}
Add 2 and 2 to get 4.
4+\frac{\sqrt{8}}{\sqrt{2}}
Combine \sqrt{3} and -\sqrt{3} to get 0.
4+\sqrt{4}
Rewrite the division of square roots \frac{\sqrt{8}}{\sqrt{2}} as the square root of the division \sqrt{\frac{8}{2}} and perform the division.
4+2
Calculate the square root of 4 and get 2.
6
Add 4 and 2 to get 6.