Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2+\sqrt{2}}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}+\frac{1}{\sqrt{2}-1}
Rationalize the denominator of \frac{1}{2-\sqrt{2}} by multiplying numerator and denominator by 2+\sqrt{2}.
\frac{2+\sqrt{2}}{2^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{\sqrt{2}-1}
Consider \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2+\sqrt{2}}{4-2}+\frac{1}{\sqrt{2}-1}
Square 2. Square \sqrt{2}.
\frac{2+\sqrt{2}}{2}+\frac{1}{\sqrt{2}-1}
Subtract 2 from 4 to get 2.
\frac{2+\sqrt{2}}{2}+\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}
Rationalize the denominator of \frac{1}{\sqrt{2}-1} by multiplying numerator and denominator by \sqrt{2}+1.
\frac{2+\sqrt{2}}{2}+\frac{\sqrt{2}+1}{\left(\sqrt{2}\right)^{2}-1^{2}}
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2+\sqrt{2}}{2}+\frac{\sqrt{2}+1}{2-1}
Square \sqrt{2}. Square 1.
\frac{2+\sqrt{2}}{2}+\frac{\sqrt{2}+1}{1}
Subtract 1 from 2 to get 1.
\frac{2+\sqrt{2}}{2}+\sqrt{2}+1
Anything divided by one gives itself.
\frac{2+\sqrt{2}}{2}+\frac{2\left(\sqrt{2}+1\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2}+1 times \frac{2}{2}.
\frac{2+\sqrt{2}+2\left(\sqrt{2}+1\right)}{2}
Since \frac{2+\sqrt{2}}{2} and \frac{2\left(\sqrt{2}+1\right)}{2} have the same denominator, add them by adding their numerators.
\frac{2+\sqrt{2}+2\sqrt{2}+2}{2}
Do the multiplications in 2+\sqrt{2}+2\left(\sqrt{2}+1\right).
\frac{4+3\sqrt{2}}{2}
Do the calculations in 2+\sqrt{2}+2\sqrt{2}+2.