Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2\left(\frac{a\left(a+b\right)}{a+b}+\frac{\left(a-b\right)^{2}}{a+b}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+b}{a+b}.
\frac{1}{2\times \frac{a\left(a+b\right)+\left(a-b\right)^{2}}{a+b}}
Since \frac{a\left(a+b\right)}{a+b} and \frac{\left(a-b\right)^{2}}{a+b} have the same denominator, add them by adding their numerators.
\frac{1}{2\times \frac{a^{2}+ab+a^{2}-2ab+b^{2}}{a+b}}
Do the multiplications in a\left(a+b\right)+\left(a-b\right)^{2}.
\frac{1}{2\times \frac{2a^{2}+b^{2}-ab}{a+b}}
Combine like terms in a^{2}+ab+a^{2}-2ab+b^{2}.
\frac{1}{\frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b}}
Express 2\times \frac{2a^{2}+b^{2}-ab}{a+b} as a single fraction.
\frac{a+b}{2\left(2a^{2}+b^{2}-ab\right)}
Divide 1 by \frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b} by multiplying 1 by the reciprocal of \frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b}.
\frac{a+b}{4a^{2}+2b^{2}-2ab}
Use the distributive property to multiply 2 by 2a^{2}+b^{2}-ab.
\frac{1}{2\left(\frac{a\left(a+b\right)}{a+b}+\frac{\left(a-b\right)^{2}}{a+b}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+b}{a+b}.
\frac{1}{2\times \frac{a\left(a+b\right)+\left(a-b\right)^{2}}{a+b}}
Since \frac{a\left(a+b\right)}{a+b} and \frac{\left(a-b\right)^{2}}{a+b} have the same denominator, add them by adding their numerators.
\frac{1}{2\times \frac{a^{2}+ab+a^{2}-2ab+b^{2}}{a+b}}
Do the multiplications in a\left(a+b\right)+\left(a-b\right)^{2}.
\frac{1}{2\times \frac{2a^{2}+b^{2}-ab}{a+b}}
Combine like terms in a^{2}+ab+a^{2}-2ab+b^{2}.
\frac{1}{\frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b}}
Express 2\times \frac{2a^{2}+b^{2}-ab}{a+b} as a single fraction.
\frac{a+b}{2\left(2a^{2}+b^{2}-ab\right)}
Divide 1 by \frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b} by multiplying 1 by the reciprocal of \frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b}.
\frac{a+b}{4a^{2}+2b^{2}-2ab}
Use the distributive property to multiply 2 by 2a^{2}+b^{2}-ab.