Evaluate
\frac{a+b}{2\left(2a^{2}-ab+b^{2}\right)}
Expand
\frac{a+b}{2\left(2a^{2}-ab+b^{2}\right)}
Share
Copied to clipboard
\frac{1}{2\left(\frac{a\left(a+b\right)}{a+b}+\frac{\left(a-b\right)^{2}}{a+b}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+b}{a+b}.
\frac{1}{2\times \frac{a\left(a+b\right)+\left(a-b\right)^{2}}{a+b}}
Since \frac{a\left(a+b\right)}{a+b} and \frac{\left(a-b\right)^{2}}{a+b} have the same denominator, add them by adding their numerators.
\frac{1}{2\times \frac{a^{2}+ab+a^{2}-2ab+b^{2}}{a+b}}
Do the multiplications in a\left(a+b\right)+\left(a-b\right)^{2}.
\frac{1}{2\times \frac{2a^{2}+b^{2}-ab}{a+b}}
Combine like terms in a^{2}+ab+a^{2}-2ab+b^{2}.
\frac{1}{\frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b}}
Express 2\times \frac{2a^{2}+b^{2}-ab}{a+b} as a single fraction.
\frac{a+b}{2\left(2a^{2}+b^{2}-ab\right)}
Divide 1 by \frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b} by multiplying 1 by the reciprocal of \frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b}.
\frac{a+b}{4a^{2}+2b^{2}-2ab}
Use the distributive property to multiply 2 by 2a^{2}+b^{2}-ab.
\frac{1}{2\left(\frac{a\left(a+b\right)}{a+b}+\frac{\left(a-b\right)^{2}}{a+b}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+b}{a+b}.
\frac{1}{2\times \frac{a\left(a+b\right)+\left(a-b\right)^{2}}{a+b}}
Since \frac{a\left(a+b\right)}{a+b} and \frac{\left(a-b\right)^{2}}{a+b} have the same denominator, add them by adding their numerators.
\frac{1}{2\times \frac{a^{2}+ab+a^{2}-2ab+b^{2}}{a+b}}
Do the multiplications in a\left(a+b\right)+\left(a-b\right)^{2}.
\frac{1}{2\times \frac{2a^{2}+b^{2}-ab}{a+b}}
Combine like terms in a^{2}+ab+a^{2}-2ab+b^{2}.
\frac{1}{\frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b}}
Express 2\times \frac{2a^{2}+b^{2}-ab}{a+b} as a single fraction.
\frac{a+b}{2\left(2a^{2}+b^{2}-ab\right)}
Divide 1 by \frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b} by multiplying 1 by the reciprocal of \frac{2\left(2a^{2}+b^{2}-ab\right)}{a+b}.
\frac{a+b}{4a^{2}+2b^{2}-2ab}
Use the distributive property to multiply 2 by 2a^{2}+b^{2}-ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}