Solve for z
z=-3
Share
Copied to clipboard
\frac{1}{2}z+6=\frac{3}{2}z+\frac{3}{2}\times 6
Use the distributive property to multiply \frac{3}{2} by z+6.
\frac{1}{2}z+6=\frac{3}{2}z+\frac{3\times 6}{2}
Express \frac{3}{2}\times 6 as a single fraction.
\frac{1}{2}z+6=\frac{3}{2}z+\frac{18}{2}
Multiply 3 and 6 to get 18.
\frac{1}{2}z+6=\frac{3}{2}z+9
Divide 18 by 2 to get 9.
\frac{1}{2}z+6-\frac{3}{2}z=9
Subtract \frac{3}{2}z from both sides.
-z+6=9
Combine \frac{1}{2}z and -\frac{3}{2}z to get -z.
-z=9-6
Subtract 6 from both sides.
-z=3
Subtract 6 from 9 to get 3.
z=-3
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}