Solve for y
y<-\frac{5}{4}
Graph
Share
Copied to clipboard
\frac{1}{2}y-\frac{1}{8}-\frac{6}{5}y>\frac{3}{4}
Subtract \frac{6}{5}y from both sides.
-\frac{7}{10}y-\frac{1}{8}>\frac{3}{4}
Combine \frac{1}{2}y and -\frac{6}{5}y to get -\frac{7}{10}y.
-\frac{7}{10}y>\frac{3}{4}+\frac{1}{8}
Add \frac{1}{8} to both sides.
-\frac{7}{10}y>\frac{6}{8}+\frac{1}{8}
Least common multiple of 4 and 8 is 8. Convert \frac{3}{4} and \frac{1}{8} to fractions with denominator 8.
-\frac{7}{10}y>\frac{6+1}{8}
Since \frac{6}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
-\frac{7}{10}y>\frac{7}{8}
Add 6 and 1 to get 7.
y<\frac{7}{8}\left(-\frac{10}{7}\right)
Multiply both sides by -\frac{10}{7}, the reciprocal of -\frac{7}{10}. Since -\frac{7}{10} is negative, the inequality direction is changed.
y<\frac{7\left(-10\right)}{8\times 7}
Multiply \frac{7}{8} times -\frac{10}{7} by multiplying numerator times numerator and denominator times denominator.
y<\frac{-10}{8}
Cancel out 7 in both numerator and denominator.
y<-\frac{5}{4}
Reduce the fraction \frac{-10}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}