Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
\frac{1}{7}x+\frac{1}{2}=\frac{5}{7}-\frac{2}{7}x
Combine \frac{1}{2}x and -\frac{5}{14}x to get \frac{1}{7}x.
\frac{1}{7}x+\frac{1}{2}+\frac{2}{7}x=\frac{5}{7}
Add \frac{2}{7}x to both sides.
\frac{3}{7}x+\frac{1}{2}=\frac{5}{7}
Combine \frac{1}{7}x and \frac{2}{7}x to get \frac{3}{7}x.
\frac{3}{7}x=\frac{5}{7}-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
\frac{3}{7}x=\frac{10}{14}-\frac{7}{14}
Least common multiple of 7 and 2 is 14. Convert \frac{5}{7} and \frac{1}{2} to fractions with denominator 14.
\frac{3}{7}x=\frac{10-7}{14}
Since \frac{10}{14} and \frac{7}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{7}x=\frac{3}{14}
Subtract 7 from 10 to get 3.
x=\frac{3}{14}\times \frac{7}{3}
Multiply both sides by \frac{7}{3}, the reciprocal of \frac{3}{7}.
x=\frac{3\times 7}{14\times 3}
Multiply \frac{3}{14} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{7}{14}
Cancel out 3 in both numerator and denominator.
x=\frac{1}{2}
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}