Solve for x
x\geq -\frac{1}{2}
Graph
Share
Copied to clipboard
\frac{1}{2}x-\frac{3}{4}-\frac{1}{3}x\geq -\frac{5}{6}
Subtract \frac{1}{3}x from both sides.
\frac{1}{6}x-\frac{3}{4}\geq -\frac{5}{6}
Combine \frac{1}{2}x and -\frac{1}{3}x to get \frac{1}{6}x.
\frac{1}{6}x\geq -\frac{5}{6}+\frac{3}{4}
Add \frac{3}{4} to both sides.
\frac{1}{6}x\geq -\frac{10}{12}+\frac{9}{12}
Least common multiple of 6 and 4 is 12. Convert -\frac{5}{6} and \frac{3}{4} to fractions with denominator 12.
\frac{1}{6}x\geq \frac{-10+9}{12}
Since -\frac{10}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\frac{1}{6}x\geq -\frac{1}{12}
Add -10 and 9 to get -1.
x\geq -\frac{1}{12}\times 6
Multiply both sides by 6, the reciprocal of \frac{1}{6}. Since \frac{1}{6} is positive, the inequality direction remains the same.
x\geq \frac{-6}{12}
Express -\frac{1}{12}\times 6 as a single fraction.
x\geq -\frac{1}{2}
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}