Solve for x
x\leq -\frac{1}{2}
Graph
Share
Copied to clipboard
\frac{1}{2}x-\left(\frac{\left(x+1\right)^{2}}{2^{2}}-\left(\frac{x-1}{2}\right)^{2}\right)+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
To raise \frac{x+1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{2}x-\left(\frac{\left(x+1\right)^{2}}{2^{2}}-\frac{\left(x-1\right)^{2}}{2^{2}}\right)+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
To raise \frac{x-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{2}x-\left(\frac{\left(x+1\right)^{2}}{2^{2}}-\frac{x^{2}-2x+1}{2^{2}}\right)+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\frac{1}{2}x-\left(\frac{\left(x+1\right)^{2}}{2^{2}}-\frac{x^{2}-2x+1}{4}\right)+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
Calculate 2 to the power of 2 and get 4.
\frac{1}{2}x-\left(\frac{\left(x+1\right)^{2}}{4}-\frac{x^{2}-2x+1}{4}\right)+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{1}{2}x-\frac{\left(x+1\right)^{2}-\left(x^{2}-2x+1\right)}{4}+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
Since \frac{\left(x+1\right)^{2}}{4} and \frac{x^{2}-2x+1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x-\frac{x^{2}+2x+1-x^{2}+2x-1}{4}+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
Do the multiplications in \left(x+1\right)^{2}-\left(x^{2}-2x+1\right).
\frac{1}{2}x-\frac{4x}{4}+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
Combine like terms in x^{2}+2x+1-x^{2}+2x-1.
\frac{1}{2}x-x+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
Cancel out 4 and 4.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \left(\left(\frac{x+1}{2}\right)^{2}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
Combine \frac{1}{2}x and -x to get -\frac{1}{2}x.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \left(\frac{\left(x+1\right)^{2}}{2^{2}}+\left(\frac{x-1}{2}\right)^{2}\right)^{2}-\frac{1}{4}x^{4}
To raise \frac{x+1}{2} to a power, raise both numerator and denominator to the power and then divide.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \left(\frac{\left(x+1\right)^{2}}{2^{2}}+\frac{\left(x-1\right)^{2}}{2^{2}}\right)^{2}-\frac{1}{4}x^{4}
To raise \frac{x-1}{2} to a power, raise both numerator and denominator to the power and then divide.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \left(\frac{\left(x+1\right)^{2}+\left(x-1\right)^{2}}{2^{2}}\right)^{2}-\frac{1}{4}x^{4}
Since \frac{\left(x+1\right)^{2}}{2^{2}} and \frac{\left(x-1\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \left(\frac{x^{2}+2x+1+x^{2}-2x+1}{2^{2}}\right)^{2}-\frac{1}{4}x^{4}
Do the multiplications in \left(x+1\right)^{2}+\left(x-1\right)^{2}.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \left(\frac{2x^{2}+2}{2^{2}}\right)^{2}-\frac{1}{4}x^{4}
Combine like terms in x^{2}+2x+1+x^{2}-2x+1.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \left(\frac{2\left(x^{2}+1\right)}{2^{2}}\right)^{2}-\frac{1}{4}x^{4}
Factor the expressions that are not already factored in \frac{2x^{2}+2}{2^{2}}.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \left(\frac{x^{2}+1}{2}\right)^{2}-\frac{1}{4}x^{4}
Cancel out 2 in both numerator and denominator.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \frac{\left(x^{2}+1\right)^{2}}{2^{2}}-\frac{1}{4}x^{4}
To raise \frac{x^{2}+1}{2} to a power, raise both numerator and denominator to the power and then divide.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \frac{\left(x^{2}\right)^{2}+2x^{2}+1}{2^{2}}-\frac{1}{4}x^{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \frac{x^{4}+2x^{2}+1}{2^{2}}-\frac{1}{4}x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \frac{x^{4}+2x^{2}+1}{4}-\frac{1}{4}x^{4}
Calculate 2 to the power of 2 and get 4.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}
Divide each term of x^{4}+2x^{2}+1 by 4 to get \frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}.
-\frac{1}{2}x+\frac{1}{2}x^{2}\geq \frac{1}{2}x^{2}+\frac{1}{4}
Combine \frac{1}{4}x^{4} and -\frac{1}{4}x^{4} to get 0.
-\frac{1}{2}x+\frac{1}{2}x^{2}-\frac{1}{2}x^{2}\geq \frac{1}{4}
Subtract \frac{1}{2}x^{2} from both sides.
-\frac{1}{2}x\geq \frac{1}{4}
Combine \frac{1}{2}x^{2} and -\frac{1}{2}x^{2} to get 0.
x\leq \frac{1}{4}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}. Since -\frac{1}{2} is negative, the inequality direction is changed.
x\leq -\frac{1}{2}
Multiply \frac{1}{4} and -2 to get -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}