Solve for x
x\in \left(-\infty,0\right)\cup \left(\frac{3}{4},\infty\right)
Graph
Share
Copied to clipboard
\frac{1}{2}x\times 2x+\frac{1}{2}x\left(-\frac{3}{2}\right)>0
Use the distributive property to multiply \frac{1}{2}x by 2x-\frac{3}{2}.
\frac{1}{2}x^{2}\times 2+\frac{1}{2}x\left(-\frac{3}{2}\right)>0
Multiply x and x to get x^{2}.
x^{2}+\frac{1}{2}x\left(-\frac{3}{2}\right)>0
Cancel out 2 and 2.
x^{2}+\frac{1\left(-3\right)}{2\times 2}x>0
Multiply \frac{1}{2} times -\frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x^{2}+\frac{-3}{4}x>0
Do the multiplications in the fraction \frac{1\left(-3\right)}{2\times 2}.
x^{2}-\frac{3}{4}x>0
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{1}{4}x\left(4x-3\right)>0
Factor out x.
x<0 x-\frac{3}{4}<0
For the product to be positive, x and x-\frac{3}{4} have to be both negative or both positive. Consider the case when x and x-\frac{3}{4} are both negative.
x<0
The solution satisfying both inequalities is x<0.
x-\frac{3}{4}>0 x>0
Consider the case when x and x-\frac{3}{4} are both positive.
x>\frac{3}{4}
The solution satisfying both inequalities is x>\frac{3}{4}.
x<0\text{; }x>\frac{3}{4}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}