Solve for x
x=\frac{2}{a\left(2-a\right)}
a\neq 2\text{ and }a\neq 0
Solve for a (complex solution)
a=-\frac{\sqrt{x\left(x-2\right)}-x}{x}
a=\frac{\sqrt{x\left(x-2\right)}+x}{x}\text{, }x\neq 0
Solve for a
a=-\frac{\sqrt{x\left(x-2\right)}-x}{x}
a=\frac{\sqrt{x\left(x-2\right)}+x}{x}\text{, }x<0\text{ or }x\geq 2
Graph
Share
Copied to clipboard
\frac{1}{2}x\left(-a^{2}+2a\right)\times 3=3
Subtract 0 from 3 to get 3.
\frac{3}{2}x\left(-a^{2}+2a\right)=3
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x\left(-a^{2}\right)+3xa=3
Use the distributive property to multiply \frac{3}{2}x by -a^{2}+2a.
-\frac{3}{2}xa^{2}+3xa=3
Multiply \frac{3}{2} and -1 to get -\frac{3}{2}.
\left(-\frac{3}{2}a^{2}+3a\right)x=3
Combine all terms containing x.
\left(-\frac{3a^{2}}{2}+3a\right)x=3
The equation is in standard form.
\frac{\left(-\frac{3a^{2}}{2}+3a\right)x}{-\frac{3a^{2}}{2}+3a}=\frac{3}{-\frac{3a^{2}}{2}+3a}
Divide both sides by -\frac{3}{2}a^{2}+3a.
x=\frac{3}{-\frac{3a^{2}}{2}+3a}
Dividing by -\frac{3}{2}a^{2}+3a undoes the multiplication by -\frac{3}{2}a^{2}+3a.
x=\frac{2}{a\left(2-a\right)}
Divide 3 by -\frac{3}{2}a^{2}+3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}