Solve for x
x = \frac{\sqrt{157} + 11}{6} \approx 3.921660681
x=\frac{11-\sqrt{157}}{6}\approx -0.254994014
Graph
Share
Copied to clipboard
6x\left(\frac{x}{3}-\frac{1}{2}\right)+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Multiply both sides of the equation by 12, the least common multiple of 2,3,4,6.
6x\left(\frac{2x}{6}-\frac{3}{6}\right)+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{x}{3} times \frac{2}{2}. Multiply \frac{1}{2} times \frac{3}{3}.
6x\times \frac{2x-3}{6}+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Since \frac{2x}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{6\left(2x-3\right)}{6}x+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Express 6\times \frac{2x-3}{6} as a single fraction.
\left(2x-3\right)x+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Cancel out 6 and 6.
2x^{2}-3x+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Use the distributive property to multiply 2x-3 by x.
2x^{2}-3x+4x\left(\frac{3}{12}-\frac{4}{12}\right)=2\left(2x+1\right)
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
2x^{2}-3x+4x\times \frac{3-4}{12}=2\left(2x+1\right)
Since \frac{3}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
2x^{2}-3x+4x\left(-\frac{1}{12}\right)=2\left(2x+1\right)
Subtract 4 from 3 to get -1.
2x^{2}-3x+\frac{4\left(-1\right)}{12}x=2\left(2x+1\right)
Express 4\left(-\frac{1}{12}\right) as a single fraction.
2x^{2}-3x+\frac{-4}{12}x=2\left(2x+1\right)
Multiply 4 and -1 to get -4.
2x^{2}-3x-\frac{1}{3}x=2\left(2x+1\right)
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
2x^{2}-\frac{10}{3}x=2\left(2x+1\right)
Combine -3x and -\frac{1}{3}x to get -\frac{10}{3}x.
2x^{2}-\frac{10}{3}x=4x+2
Use the distributive property to multiply 2 by 2x+1.
2x^{2}-\frac{10}{3}x-4x=2
Subtract 4x from both sides.
2x^{2}-\frac{22}{3}x=2
Combine -\frac{10}{3}x and -4x to get -\frac{22}{3}x.
2x^{2}-\frac{22}{3}x-2=0
Subtract 2 from both sides.
x=\frac{-\left(-\frac{22}{3}\right)±\sqrt{\left(-\frac{22}{3}\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -\frac{22}{3} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{22}{3}\right)±\sqrt{\frac{484}{9}-4\times 2\left(-2\right)}}{2\times 2}
Square -\frac{22}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{22}{3}\right)±\sqrt{\frac{484}{9}-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-\frac{22}{3}\right)±\sqrt{\frac{484}{9}+16}}{2\times 2}
Multiply -8 times -2.
x=\frac{-\left(-\frac{22}{3}\right)±\sqrt{\frac{628}{9}}}{2\times 2}
Add \frac{484}{9} to 16.
x=\frac{-\left(-\frac{22}{3}\right)±\frac{2\sqrt{157}}{3}}{2\times 2}
Take the square root of \frac{628}{9}.
x=\frac{\frac{22}{3}±\frac{2\sqrt{157}}{3}}{2\times 2}
The opposite of -\frac{22}{3} is \frac{22}{3}.
x=\frac{\frac{22}{3}±\frac{2\sqrt{157}}{3}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{157}+22}{3\times 4}
Now solve the equation x=\frac{\frac{22}{3}±\frac{2\sqrt{157}}{3}}{4} when ± is plus. Add \frac{22}{3} to \frac{2\sqrt{157}}{3}.
x=\frac{\sqrt{157}+11}{6}
Divide \frac{22+2\sqrt{157}}{3} by 4.
x=\frac{22-2\sqrt{157}}{3\times 4}
Now solve the equation x=\frac{\frac{22}{3}±\frac{2\sqrt{157}}{3}}{4} when ± is minus. Subtract \frac{2\sqrt{157}}{3} from \frac{22}{3}.
x=\frac{11-\sqrt{157}}{6}
Divide \frac{22-2\sqrt{157}}{3} by 4.
x=\frac{\sqrt{157}+11}{6} x=\frac{11-\sqrt{157}}{6}
The equation is now solved.
6x\left(\frac{x}{3}-\frac{1}{2}\right)+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Multiply both sides of the equation by 12, the least common multiple of 2,3,4,6.
6x\left(\frac{2x}{6}-\frac{3}{6}\right)+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{x}{3} times \frac{2}{2}. Multiply \frac{1}{2} times \frac{3}{3}.
6x\times \frac{2x-3}{6}+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Since \frac{2x}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{6\left(2x-3\right)}{6}x+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Express 6\times \frac{2x-3}{6} as a single fraction.
\left(2x-3\right)x+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Cancel out 6 and 6.
2x^{2}-3x+4x\left(\frac{1}{4}-\frac{1}{3}\right)=2\left(2x+1\right)
Use the distributive property to multiply 2x-3 by x.
2x^{2}-3x+4x\left(\frac{3}{12}-\frac{4}{12}\right)=2\left(2x+1\right)
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
2x^{2}-3x+4x\times \frac{3-4}{12}=2\left(2x+1\right)
Since \frac{3}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
2x^{2}-3x+4x\left(-\frac{1}{12}\right)=2\left(2x+1\right)
Subtract 4 from 3 to get -1.
2x^{2}-3x+\frac{4\left(-1\right)}{12}x=2\left(2x+1\right)
Express 4\left(-\frac{1}{12}\right) as a single fraction.
2x^{2}-3x+\frac{-4}{12}x=2\left(2x+1\right)
Multiply 4 and -1 to get -4.
2x^{2}-3x-\frac{1}{3}x=2\left(2x+1\right)
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
2x^{2}-\frac{10}{3}x=2\left(2x+1\right)
Combine -3x and -\frac{1}{3}x to get -\frac{10}{3}x.
2x^{2}-\frac{10}{3}x=4x+2
Use the distributive property to multiply 2 by 2x+1.
2x^{2}-\frac{10}{3}x-4x=2
Subtract 4x from both sides.
2x^{2}-\frac{22}{3}x=2
Combine -\frac{10}{3}x and -4x to get -\frac{22}{3}x.
\frac{2x^{2}-\frac{22}{3}x}{2}=\frac{2}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{\frac{22}{3}}{2}\right)x=\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{11}{3}x=\frac{2}{2}
Divide -\frac{22}{3} by 2.
x^{2}-\frac{11}{3}x=1
Divide 2 by 2.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=1+\left(-\frac{11}{6}\right)^{2}
Divide -\frac{11}{3}, the coefficient of the x term, by 2 to get -\frac{11}{6}. Then add the square of -\frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{3}x+\frac{121}{36}=1+\frac{121}{36}
Square -\frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{157}{36}
Add 1 to \frac{121}{36}.
\left(x-\frac{11}{6}\right)^{2}=\frac{157}{36}
Factor x^{2}-\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{157}{36}}
Take the square root of both sides of the equation.
x-\frac{11}{6}=\frac{\sqrt{157}}{6} x-\frac{11}{6}=-\frac{\sqrt{157}}{6}
Simplify.
x=\frac{\sqrt{157}+11}{6} x=\frac{11-\sqrt{157}}{6}
Add \frac{11}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}