Solve for x
x\leq -4
Graph
Share
Copied to clipboard
\frac{1}{2}x\leq \frac{1}{3}x+\frac{1}{3}\left(-2\right)
Use the distributive property to multiply \frac{1}{3} by x-2.
\frac{1}{2}x\leq \frac{1}{3}x+\frac{-2}{3}
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{2}x\leq \frac{1}{3}x-\frac{2}{3}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{1}{2}x-\frac{1}{3}x\leq -\frac{2}{3}
Subtract \frac{1}{3}x from both sides.
\frac{1}{6}x\leq -\frac{2}{3}
Combine \frac{1}{2}x and -\frac{1}{3}x to get \frac{1}{6}x.
x\leq -\frac{2}{3}\times 6
Multiply both sides by 6, the reciprocal of \frac{1}{6}. Since \frac{1}{6} is positive, the inequality direction remains the same.
x\leq \frac{-2\times 6}{3}
Express -\frac{2}{3}\times 6 as a single fraction.
x\leq \frac{-12}{3}
Multiply -2 and 6 to get -12.
x\leq -4
Divide -12 by 3 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}