Solve for x
x=\frac{\sqrt{219}}{3}+5\approx 9.932882862
x=-\frac{\sqrt{219}}{3}+5\approx 0.067117138
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}-5x+\frac{1}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times \frac{1}{2}\times \frac{1}{3}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -5 for b, and \frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times \frac{1}{2}\times \frac{1}{3}}}{2\times \frac{1}{2}}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-2\times \frac{1}{3}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-5\right)±\sqrt{25-\frac{2}{3}}}{2\times \frac{1}{2}}
Multiply -2 times \frac{1}{3}.
x=\frac{-\left(-5\right)±\sqrt{\frac{73}{3}}}{2\times \frac{1}{2}}
Add 25 to -\frac{2}{3}.
x=\frac{-\left(-5\right)±\frac{\sqrt{219}}{3}}{2\times \frac{1}{2}}
Take the square root of \frac{73}{3}.
x=\frac{5±\frac{\sqrt{219}}{3}}{2\times \frac{1}{2}}
The opposite of -5 is 5.
x=\frac{5±\frac{\sqrt{219}}{3}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\frac{\sqrt{219}}{3}+5}{1}
Now solve the equation x=\frac{5±\frac{\sqrt{219}}{3}}{1} when ± is plus. Add 5 to \frac{\sqrt{219}}{3}.
x=\frac{\sqrt{219}}{3}+5
Divide 5+\frac{\sqrt{219}}{3} by 1.
x=\frac{-\frac{\sqrt{219}}{3}+5}{1}
Now solve the equation x=\frac{5±\frac{\sqrt{219}}{3}}{1} when ± is minus. Subtract \frac{\sqrt{219}}{3} from 5.
x=-\frac{\sqrt{219}}{3}+5
Divide 5-\frac{\sqrt{219}}{3} by 1.
x=\frac{\sqrt{219}}{3}+5 x=-\frac{\sqrt{219}}{3}+5
The equation is now solved.
\frac{1}{2}x^{2}-5x+\frac{1}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}-5x+\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
\frac{1}{2}x^{2}-5x=-\frac{1}{3}
Subtracting \frac{1}{3} from itself leaves 0.
\frac{\frac{1}{2}x^{2}-5x}{\frac{1}{2}}=-\frac{\frac{1}{3}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{5}{\frac{1}{2}}\right)x=-\frac{\frac{1}{3}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-10x=-\frac{\frac{1}{3}}{\frac{1}{2}}
Divide -5 by \frac{1}{2} by multiplying -5 by the reciprocal of \frac{1}{2}.
x^{2}-10x=-\frac{2}{3}
Divide -\frac{1}{3} by \frac{1}{2} by multiplying -\frac{1}{3} by the reciprocal of \frac{1}{2}.
x^{2}-10x+\left(-5\right)^{2}=-\frac{2}{3}+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-\frac{2}{3}+25
Square -5.
x^{2}-10x+25=\frac{73}{3}
Add -\frac{2}{3} to 25.
\left(x-5\right)^{2}=\frac{73}{3}
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{\frac{73}{3}}
Take the square root of both sides of the equation.
x-5=\frac{\sqrt{219}}{3} x-5=-\frac{\sqrt{219}}{3}
Simplify.
x=\frac{\sqrt{219}}{3}+5 x=-\frac{\sqrt{219}}{3}+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}