Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}-4x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{1}{2}\times 5}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -4 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{1}{2}\times 5}}{2\times \frac{1}{2}}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-2\times 5}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-4\right)±\sqrt{16-10}}{2\times \frac{1}{2}}
Multiply -2 times 5.
x=\frac{-\left(-4\right)±\sqrt{6}}{2\times \frac{1}{2}}
Add 16 to -10.
x=\frac{4±\sqrt{6}}{2\times \frac{1}{2}}
The opposite of -4 is 4.
x=\frac{4±\sqrt{6}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{6}+4}{1}
Now solve the equation x=\frac{4±\sqrt{6}}{1} when ± is plus. Add 4 to \sqrt{6}.
x=\sqrt{6}+4
Divide 4+\sqrt{6} by 1.
x=\frac{4-\sqrt{6}}{1}
Now solve the equation x=\frac{4±\sqrt{6}}{1} when ± is minus. Subtract \sqrt{6} from 4.
x=4-\sqrt{6}
Divide 4-\sqrt{6} by 1.
x=\sqrt{6}+4 x=4-\sqrt{6}
The equation is now solved.
\frac{1}{2}x^{2}-4x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}-4x+5-5=-5
Subtract 5 from both sides of the equation.
\frac{1}{2}x^{2}-4x=-5
Subtracting 5 from itself leaves 0.
\frac{\frac{1}{2}x^{2}-4x}{\frac{1}{2}}=-\frac{5}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{4}{\frac{1}{2}}\right)x=-\frac{5}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-8x=-\frac{5}{\frac{1}{2}}
Divide -4 by \frac{1}{2} by multiplying -4 by the reciprocal of \frac{1}{2}.
x^{2}-8x=-10
Divide -5 by \frac{1}{2} by multiplying -5 by the reciprocal of \frac{1}{2}.
x^{2}-8x+\left(-4\right)^{2}=-10+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-10+16
Square -4.
x^{2}-8x+16=6
Add -10 to 16.
\left(x-4\right)^{2}=6
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x-4=\sqrt{6} x-4=-\sqrt{6}
Simplify.
x=\sqrt{6}+4 x=4-\sqrt{6}
Add 4 to both sides of the equation.